K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

t​a có: xy+3y-y=6

=> xy+2y=6

=> y(x+2)=6

vì x,y nguyên nên y,(x+2) là các ước của 6

ta có bảng sau

x+21-12-23-36-6
y6-63-32-21-1
x-1-30-41-54-8
25 tháng 10 2016

xy+3y-y=6

xy+y(3-1)=6

xy+y2=6

y(x+2)=6

lập bảng

x+223-2-3
y32-3-2
x01-4-5

vậy với các cặp x,y thỏa mãn là:

nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5

29 tháng 6 2023

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
29 tháng 6 2023

nhưng mà đề bài là 2n+11 chia hết cho 2k-1 chứ không phải 2n+11 chia hết cho 2k-1.

 

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:

Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm) 

Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm) 

Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)

Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:

Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm) 

Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm) 

Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)

Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.

22 tháng 10 2017

bó tay tui cung dăng vướng chan ở câu hỏi này hihi

15 tháng 7 2018

bo tay

10 tháng 12 2018

n=1và-1

10 tháng 12 2018
Phú bạn có thể trình bày cách làm cho mình hiểu đc ko
21 tháng 3 2016

sai đề rồi phải tìm x hay y chứ

25 tháng 2 2016

Ta có:2n-1 chia hết cho 7

=>2n-1\(\in\)Ư(7)={-7,-1,1,7}

=>2n\(\in\){-6,0,2,8}

=>n\(\in\){-3,0,1,4}

25 tháng 2 2016

Bạn viết thêm 

Mà n là số nguyên dương nên n\(\in\){0,1,4}