Cho x thuộc { 0; 1; 2;3 } và y thuộc { 4;5;6 }. Thay x và y bằng chữ số thích hợp để x12y chia hết cho 9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 3 trường hợp:
TH1: x=0 thì x2=0.
TH2: x< 0 thì x2=0
TH3: x>0 thì x2>0
Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1-t\end{matrix}\right.\)
M thuộc d nên tọa độ có dạng \(M\left(t;1-t\right)\)
Khoảng cách từ M đến \(\Delta\): \(\dfrac{\left|4t+3\left(1-t\right)+1\right|}{\sqrt{4^2+3^2}}=2\)
\(\Leftrightarrow\left|t+4\right|=10\Rightarrow\left[{}\begin{matrix}t=6\\t=-14\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(6;-5\right)\\M\left(-14;15\right)\end{matrix}\right.\)
3 là mệnh đề đúng, do khi \(\Delta< 0\) thì \(a.f\left(x\right)>0\) ; \(\forall a\ne0\)
Lần sau bạn lưu ý gõ đề bằng công thức toán để được hỗ trợ tốt hơn.
Lời giải:
$x+\sqrt{x}+1>1$ với mọi $x>0, x\neq 1$
$\Rightarrow T=\frac{2}{x+\sqrt{x}+1}< 2$
$x+\sqrt{x}+1>0$ với mọi $x>0, x\neq 1$
$\Rightarrow T>0$
Vậy $0< T< 2$
$T$ nguyên $\Leftrightarrow T=1$
$\Leftrightarrow \frac{2}{x+\sqrt{x}+1}=1$
$\Leftrightarrow x+\sqrt{x}+1=2$
$\Leftrightarrow x+\sqrt{x}-1=0$
$\Rightarrow x=\frac{-1+\sqrt{5}}{2}$
$\Rightarrow x=\frac{3-\sqrt{5}}{2}$ (tm)
Ta có: 0.(x + 9) = 0
=> x + 9 thuộc N*
Vì 0 nhâ với số nào cũng bằng 0
Số nào nhân với 0 đều bằng 0 hết nha!
Ta có: \(\left(-7\right).0.x=0\forall x\)
Nên \(\left(-7\right).0.x=0\)
Easy!
Ta có :
( - 7 ) . 0 . x = 0 . x = 0
Vậy ( -7 ) . 0 . x =0 ( đpcm )
Khái niệm : Cx như chúng ta đã bt , các số có tổng chia hết cko 9 thì chia hết cko 9 . Vậy :
Ta có :
x12y có tổng các chữ số : ( x+y+1+2) chia hết cho 9
=> (x+y+3) chia hét cko 9
=> x=1 và y = 5
x=2 và y = 4
k mk
x=2;y=4