K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt a=4x-19; b=4x-20

=>a^4+b^4=(a+b)^4

=>4a^3b+6a^2b^2+4ab^2=0

=>ab(4a^2+6ab+4b)=0

=>(4x-19)(4x-20)=0

=>x=19/4 hoặc x=20/4=5

9 tháng 5 2022

Đặt 4X - 19 =a; 4X -20 =b => 8X-39 = a + b

Từ đó ta có:
a^4 + b^4 = (a+b)^4 = a^4 + b^4 + 4a^3.b + 6a^2b^2 + 4ab^3
=> 4a^3.b + 6a^2.b^2 + 4a.b^3 = 0
ab(4a^2 + 6ab + 4b^2) =0
=> ab = 0 hoặc 4a^2 + 6ab +4b^2 = 0
TH1: ab = 0 -> 4x -19 =0 hoặc 4x-20 =0 => x =19/4 hoặc x = 20/4 =5
TH2: 4a^2 + 6ab +4b^2 = 0 => 2a^2 + 3ab +2b^2 = 0
Mà a - b = 1 ->a = 1+b
Thế vào ta có: 2(1+b)^2 + 3(1+b)+2b^2
= 2(1+2b+b^2) + 3b +3 + 2b^2
= 4b^2 + 7b +5
detal = 7*7 - 4*4*5 < 0 , phương trình vô nghiệm b

Vậy Phương trình ban đầu có 2 nghiệm X1 = 19/4, X2 =5

 

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

NV
25 tháng 3 2023

ĐKXĐ: \(x\ne0\)

Phương trình tương đương:

\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\)

Đặt \(4x-10+\dfrac{7}{x}=t\)

\(\Rightarrow\dfrac{4}{t+2}+\dfrac{3}{t}=1\)

\(\Rightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)

\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x-10+\dfrac{7}{x}=-1\\4x-10+\dfrac{7}{x}=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x^2-9x+7=0\left(vn\right)\\4x^2-16x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

22 tháng 1 2018

pt <=> x^4+8x-4x^3-5 = 0

<=> (x^4-x^3)-(3x^3-3x)+(5x-5) = 0

<=> x^3.(x-1)-3.x.(x-1).(x+1)+5.(x-1) = 0

<=> (x-1).(x^3-3x^2-3x+5) = 0

<=> (x-1).[(x^3-x^2)-(2x^2-2x)-(5x-5)] = 0

<=> (x-1)^2.(x^2-2x-5) = 0

<=> x-1=0 hoặc x^2-2x-5=0

<=> x=1 hoặc x = \(1+-\sqrt{6}\)

Vậy ...............

Tk mk nha

27 tháng 5 2020

ĐK: x khác 1; - 1

\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}.\)

<=> \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}+\frac{12x-1}{4x-4}.\)

<=> \(\frac{6.4}{4\left(x^2-1\right)}+\frac{5\left(x^2-1\right)}{4\left(x^2-1\right)}=\frac{\left(8x-1\right)\left(x-1\right)}{4\left(x^2-1\right)}+\frac{\left(12x-1\right)\left(x+1\right)}{4\left(x^2-1\right)}.\)

<=> \(24+20x^2-20=8x^2-x-8x+1+12x^2-x+12x-1\)

<=> \(2x=4\)

<=> x = 2 thỏa mãn.

16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

4 tháng 3 2021

\(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)\(ĐKXĐ:x\ne1;2;3;4\)

\(\Leftrightarrow\frac{\left(x-1\right)^2+1}{x-1}+\frac{\left(x-4\right)^2+4}{x-4}=\frac{\left(x-2\right)^2+2}{x-2}+\frac{\left(x-3\right)^2+3}{x-3}\)

\(\Leftrightarrow\left(\frac{\left(x-1\right)^2}{x-1}+\frac{1}{x-1}\right)+\left(\frac{\left(x-4\right)^2}{x-4}+\frac{4}{x-4}\right)=\left(\frac{\left(x-2\right)^2}{x-2}+\frac{2}{x-2}\right)+\left(\frac{\left(x-3\right)^2}{x-3}+\frac{3}{x-3}\right)\)

\(\Leftrightarrow x-1+\frac{1}{x-1}+x-4+\frac{1}{x-4}=x-2+\frac{1}{x-2}+x-3+\frac{1}{x-3}\)

\(\Leftrightarrow\frac{1}{x-1}+\frac{4}{x-4}=\frac{2}{x-2}+\frac{3}{x-3}\)

\(\Leftrightarrow\frac{x-4+4x-4}{\left(x-1\right)\left(x-4\right)}=\frac{2x-6+3x-6}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{5x-8}{x^2-5x+4}=\frac{5x-12}{x^2-5x+6}\)

\(\Leftrightarrow\left(5x-8\right)\left(x^2-5x+6\right)=\left(5x-12\right)\left(x^2-5x+4\right)\)

Tự giải ra rồi tìm x nhé

24 tháng 1 2017

29 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)

\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(x-1\right)}=0\)

\(\Leftrightarrow\frac{24+20\left(x^2-1\right)-\left(8x-1\right)\left(x-1\right)-\left(12x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2-11x+1=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow x=2\)

Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)

29 tháng 2 2020

ĐKXĐ: \(x\ne\pm1\)

\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)

\(\Leftrightarrow\frac{6}{\left(x+1\right)\left(x-1\right)}+5=\frac{8x-1}{4\left(x+1\right)}-\frac{12x-1}{4\left(1-x\right)}\)

\(\Leftrightarrow24\left(1-x\right)+20\left(x+1\right)\left(x-1\right)\left(1-x\right)=\left(8x-1\right)\left(x-1\right)\left(1-x\right)\)\(-\left(12x-1\right)\left(x+1\right)\left(1-x\right)\)

\(\Leftrightarrow4-4x+20x^2-20x^3=18x^2-20x^3+2x\)

\(\Leftrightarrow4-4x+20x^2=18x^2+2x\)

\(\Leftrightarrow4-4x+20x^2-18x^2-2x=0\)