K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

lx

8 tháng 5 2022

lỗi

9:

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE và BA=BE

c: DA=DE
DA<DF

=>DE<DF

14 tháng 12 2022

Bài 16.5:

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc A chung

Do đó: ΔADB=ΔAEC

=>AD=AE

b: Xét ΔBAC có AE/AB=AD/AC

nên ED//BC

c: góc EBC+góc ICB=90 độ

góc DCB+góc IBC=90 độ

mà góc EBC=góc DCB

nên góc IBC=góc ICB
=>ΔIBC cân tại I

d; AB=AC

IB=IC

Do đó: AI là trung trực của BC

=>AI vuông góc với BC

Bài 4: 

c) Ta có: \(\dfrac{x^3}{8}+\dfrac{x^2y}{2}+\dfrac{xy^2}{6}+\dfrac{y^3}{27}\)

\(=\left(\dfrac{x}{2}\right)^3+3\cdot\left(\dfrac{x}{2}\right)^2\cdot\dfrac{y}{3}+3\cdot\dfrac{x}{2}\cdot\left(\dfrac{y}{3}\right)^2+\left(\dfrac{y}{3}\right)^3\)

\(=\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^3\)

\(=\left(\dfrac{-1}{2}\cdot8+\dfrac{1}{3}\cdot6\right)^3=\left(-4+2\right)^3=-8\)

14 tháng 10 2021

Bài 4: 

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

14 tháng 10 2021

em cảm ơn ạ nhưng mà e cần CM câu c chứ ko phải là câu b ạ

23 tháng 3 2018

c, Xét tam giác HAC và MBC có : 

\(\widehat{AHC}=\widehat{BMC}=90^O\)

Góc BCM chung 

=> tam giác HAC đồng dạng với MBC

23 tháng 3 2018

giúp mình nốt câu e đc k???

23 tháng 10 2021

\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2021

6a.

$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$

$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

Bài 4: 

a) Xét ΔABE và ΔHBE có 

BA=BH(gt)

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

BE chung

Do đó: ΔABE=ΔHBE(c-g-c)

b) Ta có: ΔABE=ΔHBE(cmt)

nên EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(gt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH

c) Ta có: ΔABE=ΔHBE(cmt)

nên \(\widehat{BAE}=\widehat{BHE}\)(hai góc tương ứng)

mà \(\widehat{BAE}=90^0\)(gt)

nên \(\widehat{BHE}=90^0\)

Xét ΔBKC có 

KH là đường cao ứng với cạnh BC

CA là đường cao ứng với cạnh BK

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)

d) Ta có: EA=EH(cmt)

mà EH<EC(ΔEHC vuông tại H có EC là cạnh huyền)

nên EA<EC

7 tháng 9 2021

a. -2x(x3 - 3x2 - x + 1)

= -2x4 + 6x3 + 2x2 - 2x

c. 3x2(2x3 - x + 5)

= 6x5 - 3x3 + 15x2

Bài 3: 

a: Ta có: \(6x\left(5x-3\right)+3x\left(1-10x\right)=7\)

\(\Leftrightarrow30x^2-18x+3x-30x^2=7\)

\(\Leftrightarrow x=-\dfrac{7}{15}\)

b: Ta có: \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)

hay x=2

c: ta có: \(x\left(5-2x\right)-2x\cdot\left(x-1\right)=15\)

\(\Leftrightarrow5x-2x^2-2x^2+2x-15=0\)

\(\Leftrightarrow-4x^2+7x-15=0\)

\(\text{Δ}=7^2-4\cdot\left(-4\right)\cdot\left(-15\right)=-191\)

Vì Δ<0 nên phương trình vô nghiệm