cho tam giác ABC vuông tại Acó AB=6 BC=10 a,tính độ dài đoạn BC b,tia phân giác góc b cắt AC tại D từ D vẽ DM vuông góc với BC tại M chứng minh tam giác ABD=tam giác MBD tính độ dài đoạn MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE
hay ΔBAE cân tại B
d: Ta có: ΔABD=ΔEBD
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABD vuông tại A và ΔMBD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBE chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
Bổ sung đề: \(\widehat{ABC}=60^0\)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên BA=BE(hai cạnh tương ứng)
Xét ΔABE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)
nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)
c) Xét ΔABC vuông tại A có
\(\cos\widehat{B}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)
Vậy: BC=10cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
chúc bạn học tốt!
D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!
Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+62
BC2=36+36
BC2=72
⇒BC=\(\sqrt{72}\)
xét hai tam giác vuông AND và HBD có:
\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )
BD là cạnh chung
⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)
⇒AB=HB(2 cạnh tương ứng)
⇒ΔABH là tam giác cân
gọi D' là giao điểm của AH và BD ta có:
xét ΔABD' và ΔHBD' có:
\(\widehat{DBH}\) =\(\widehat{DBA}\) (BC là tia phân giác của\(\widehat{HBA}\) )
AB=HB(ΔABH cân tại B)
\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)
⇒ ΔABD' = ΔHBD' (G-C-G)
⇒HD'=AD'(2 cạnh tương ứng)
vì ΔABD' = ΔHBD'
⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)
Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)
Từ (1)và(2) ⇒ D'B⊥AH(3)
Từ (1)và(3) ⇒BD là đường trung trực của AH
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
a) Sửa đề: Tính AC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Vậy: AC=8cm
b) Xét ΔABD vuông tại A và ΔMBD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))
Do đó: ΔABD=ΔMBD(cạnh huyền-góc nhọn)