K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Sửa đề: Tính AC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Vậy: AC=8cm

b) Xét ΔABD vuông tại A và ΔMBD vuông tại M có 

BD chung

\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))

Do đó: ΔABD=ΔMBD(cạnh huyền-góc nhọn)

12 tháng 5 2022

Tham khảo:

undefined

12 tháng 5 2022

refer

undefined

a: BC=10cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

d: Ta có: ΔABD=ΔEBD

nên DA=DE
hay D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

nên B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABD vuông tại A và ΔMBD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có

BM=BA

góc MBE chung

=>ΔBME=ΔBAC

=>BE=BC

=>ΔBEC cân tại B

Bổ sung đề: \(\widehat{ABC}=60^0\)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)

nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)

c) Xét ΔABC vuông tại A có 

\(\cos\widehat{B}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)

Vậy: BC=10cm

26 tháng 3 2021

Tam giác ACBD là cái gì vậy bạn

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

19 tháng 3 2019

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD 

Suy ra góc ABD = góc EBD 

Vậy tam giác ABD = tam giác EBD 

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD ) 

Suy ra tam giác ABE cân tại B 

Tam giác ABE cân tại B có góc EBA =60 độ 

Suy ra tam giác ABE là tam giác đều 

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ 

Suy ra ACB = 30 độ 

Suy ra tam giác ABC là nửa tam giác đều  

Suy ra AB = 1/2 BC 

Suy ra BC = 2AB = 2 . 5 = 10 cm

chúc bạn học tốt! smileyyesheartwink

19 tháng 3 2019

d) như phần c nha bn

23 tháng 3 2021

A B C D H

D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!

Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+62

BC2=36+36

BC2=72

⇒BC=\(\sqrt{72}\)

xét hai tam giác vuông AND và HBD có:

\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )

BD là cạnh chung

⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)

⇒AB=HB(2 cạnh tương ứng)

⇒ΔABH là tam giác cân

gọi D' là giao điểm của AH và BD ta có:

xét ΔABD' và ΔHBD' có:

\(\widehat{DBH}\) =\(\widehat{DBA}\)  (BC là tia phân giác của\(\widehat{HBA}\) )

AB=HB(ΔABH cân tại B)

\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)

⇒ ΔABD' = ΔHBD' (G-C-G)

⇒HD'=AD'(2 cạnh tương ứng)

vì  ΔABD' = ΔHBD' 

⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)

Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)

Từ (1)và(2) ⇒ D'B⊥AH(3)

Từ (1)và(3) ⇒BD là đường trung trực của AH

 

 

14 tháng 5 2022

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á

 

14 tháng 5 2022

Câu 3 là phần c nha

 

20 tháng 3 2022

e tham khảo câu a

undefined