Cho Δ cân ABC đáy BC, và M ở miền trong góc A. Kẻ MH, MK, MI lần lượt vuông góc với AB, AC, BC. Giả sử MI2 = MH. MK.
Chứng minh: ΔMIH ∼ ΔMKI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: MK\(\perp\)AB
Xét tứ giác BIMK có \(\widehat{BIM}+\widehat{BKM}=90^0+90^0=180^0\)
nên BIMK là tứ giác nội tiếp
=>B,I,M,K cùng thuộc một đường tròn
b: Xét tứ giác IMHC có \(\widehat{MIC}+\widehat{MHC}=90^0+90^0=180^0\)
nên IMHC là tứ giác nội tiếp
=>\(\widehat{MHI}=\widehat{MCI}\)(1)
Ta có: BIMK là tứ giác nội tiếp
=>\(\widehat{MIK}=\widehat{MBK}\left(2\right)\)
Xét (O) có
\(\widehat{MCB}\) là góc nội tiếp chắn cung MB
\(\widehat{MBK}\) là góc tạo bởi tiếp tuyến BK và dây cung BM
Do đó: \(\widehat{MCB}=\widehat{MBK}=\widehat{MCI}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{MIK}=\widehat{MHI}\)
Ta có: BIMK là tứ giác nội tiếp
=>\(\widehat{MKI}=\widehat{MBI}=\widehat{MBC}\left(4\right)\)
Ta có: IMHC là tứ giác nội tiếp
=>\(\widehat{MIH}=\widehat{MCH}\left(5\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
\(\widehat{MCH}\) là góc tạo bởi tiếp tuyến CH và dây cung CM
Do đó: \(\widehat{MBC}=\widehat{MCH}\left(6\right)\)
Từ (4),(5),(6) suy ra \(\widehat{MIH}=\widehat{MKI}\)
Xét ΔMIH và ΔMKI có
\(\widehat{MIH}=\widehat{MKI}\)
\(\widehat{MHI}=\widehat{MIK}\)
Do đó: ΔMIH~ΔMKI
=>\(\dfrac{MI}{MK}=\dfrac{MH}{MI}\)
=>\(MI^2=MH\cdot MK\)
Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
=>ΔABM=ΔACM
=>MB=MC
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AH=AK
Xét ΔABC có AH/AB=AK/AC
nên HK//BC
Làm xong nhớ tick cho mình đấy nhé !
a) Xét ∆ABM và ∆ACM, ta có :
AB = AC (vì ∆ABC cân tại A)
AM là cạnh chung
MB = MC (vì M là trung điểm của BC)
ð ∆ABM = ∆ACM (c.c.c)
b) Xét ∆AMH và ∆AMK, ta có :
Góc HAM = góc KAM
AM là cạnh chung
Góc AHM = góc AKM
ð ∆AMH = ∆AMK
ð MH = MK (g.c.g)
c) Trong ∆AJI, ta có :
Góc AJI = (180° - góc A) : 2 (1)
Trong ∆ABC, ta có :
Góc abc = (180° - góc A) : 2 (2)
Từ (1) và (2) => góc AJI = góc ABC
Mà 2 góc này ở vị trí đồng vị
ð IJ // BC
\(MI^2=MH\cdot MK\\ \Rightarrow\dfrac{MI}{MK}=\dfrac{MH}{MI}\)
Tứ giác MKCI có \(\widehat{IMK}+\widehat{MKC}+\widehat{KCI}+\widehat{MIC}=360^o\)
\(\Rightarrow\widehat{IMK}+\widehat{KCI}=360^o-90^o-90^o=180^o\)
Chứng minh tương tự \(\widehat{HMI}+\widehat{IBH}=180^o\)
Mà △ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{IMK}=\widehat{IMH}\)
△MIH và △MKI có
\(\widehat{IMH}=\widehat{IMK}\\ \dfrac{MI}{MK}=\dfrac{MH}{MI}\)
\(\Rightarrow\text{△MIH}\) \(\sim\) \(\text{△MKI}\) (c.g.c)