K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Giả sử tồn tại số nguyên n thoả mãn \(\left(2014^{2014}+1\right)\) chia hết cho \(n^3+2012n\)

Ta có: \(n^3+2012n=\left(n^3-n\right)+2013n=n\left(n-1\right)\left(n+1\right)+2013n\) 

Vì: \(n-1,n,n+1\) là ba số nguyên liên tiếp nên có 1 số chia hết cho 3

Suy ra \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 3, mà 2013 chia hết cho 3 nên \(\left(n^3+2012n\right)\) chia hết cho 3 (1)

Mặt khác: \(2014^{2014}+1=\left(2013+1\right)^{2014}+1\) chia 3 dư 2 ( vì 2013 chia hết cho 3) (2)

Từ (1) và (2) dẫn đến điều giả sử trên là vô lý, tức là không có số nguyên n nào thoả mãn đề bài toán đã cho

24 tháng 10 2016

d.violet.vn//uploads/resources/present/3/652/138/preview.swf 

NV
13 tháng 4 2019

\(n^3+2012n=n\left(n^2+2012\right)\)

- Nếu \(n=3k\Rightarrow\left(n^3+2012n\right)⋮3\)

- Nếu \(n=3k+1\Rightarrow n^2+2012=9k^2+6k+2013⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\)

- Nếu \(n=3k+2\Rightarrow n^2+2012=9k^2+12k+2016⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\) \(\forall n\in Z\) (1)

Mặt khác ta có:

\(2014\equiv1\left(mod3\right)\Rightarrow2014^{2014}\equiv1\left(mod3\right)\)

\(\Rightarrow2014^{2014}+1\equiv2\left(mod3\right)\Rightarrow\left(2014^{2014}+1\right)⋮̸3\) (2)

Từ (1) và (2) suy ra điều phải chứng minh