K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => nchia cho 3 dư 1

Vậy...

n không chia hết cho 3

=> n đồng dư với 1 hoặc 2 (mod 3)

=>n^2 đồng dư với 1^2 hoặc 2^2(mod 3)

Vậy n^2 chia 3 dư 1

4 tháng 10 2017

-2/x=x/-8/25

4 tháng 10 2017

a) \(n^2+n+1=n\left(n+1\right)+1\)

Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2

b) \(n^2+n+1=n\left(n+1\right)+1\)

Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5

17 tháng 6 2017

16 tháng 1 2021

Có n không chia hết cho 3

=> n^2 không chia hết cho 3 (1)

Vì n^2 là số chính phương

=> n^2 chia cho 3 dư 1 hoặc 0 (2)

Từ (1) và (2) => n^2 chia 3 dư 1

18 tháng 5 2019

Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)

Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra  n 2  chia cho 3 dư 1.

Nếu n = 3k+2 thì   n 2  = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra  n 2  chia cho 3 dư 1.

=>  ĐPCM

Vì \(a⋮̸3\) \(\rightarrow\left[{}\begin{matrix}a=3k+1\\a=3k+2\end{matrix}\right.\) với k tự nhiên.

\(a=3k+1\Rightarrow a^2=\left(3k+1\right)^2\equiv1\left(mod3\right)\)

\(a=3k+2\Rightarrow a^2=\left(3k+2\right)^2=9k^2+12k+4\equiv1\left(mod3\right)\)

Nên ta có đpcm.

 

Giải:

\(a⋮̸3\)

\(a:3\) (dư 1 hoặc dư 2)

Xét các trường hợp:

+) \(a:3\) (dư 1)

\(a=3k+1\)

\(\Rightarrow a^2=\left(3k+1\right).\left(3k+1\right)=9k^2+6k+1=3.\left(3k^2+2k\right)+1\) 

\(\Leftrightarrow a^2:3\) (dư 1) 

+) \(a:3\) (dư 2)

\(a=3k+2\) 

\(\Rightarrow a^2=\left(3k+2\right).\left(3k+2\right)=9k^2+12k+4=3.\left(3k^2+4k+1\right)+1\) 

\(\Leftrightarrow a^2:3\) (dư 1)

Vậy \(a^2:3\) (dư 1)

8 tháng 2 2019

Vì a;b \(⋮̸\) cho 3

\(\Rightarrow\)a; b chia 3 dư 1 hoặc dư 2

+ khi a; b chia 3 dư 1 \(\Rightarrow\)a= 3k + 1 ; b = 3q + 1 (k; q \(\in\)N* )

\(\Rightarrow\)ab - 1 = (3k + 1)(3q +1) -1 = 9kq + 3k + 3q + 1 - 1 = 9kq + 3k + 3q  \(⋮\)3

+ khi a; b chia 3 dư 2 \(\Rightarrow\)a = 3k + 2 ; b = 3q +2  (k; q \(\in\)N)

\(\Rightarrow\)ab - 1 = (3k + 2)(3q +2) -1 = 9kq + 3k + 3q + 4 - 1 = 9kq + 3k + 3q +3  \(⋮\)3

\(\Rightarrow\)ĐPCM

vậy ............

~~ học tốt ~~

9 tháng 2 2019

ở chỗ 9kq+3k+3q+4-1  phải là 9kq+6k+6q+4-1 nha ae mk gõ nhầm chút

8 tháng 12 2015

a)Nếu n=2k(kEN)

thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)

Nếu n=2k+1(kEN)

thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)

Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2

b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n

Nếu n=2k(kEN )

thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................

tương tự, n=3k;3k+1;3k+2

mỏi tay chết đi được, mấy con số còn bay đi lung tung

8 tháng 10 2017

Bài 45 :

a ) Theo bài ra ta có :

a = 9.k + 6

a = 3.3.k + 3.2

\(\Rightarrow a⋮3\)

b ) Theo bài ra ta có :

a = 12.k + 9 

a = 3.4.k + 3.3

\(\Rightarrow a⋮3\)

Vì : \(a⋮3\Rightarrow a⋮6\)

c ) Ta thấy :

30 x 31 x 32 x ...... x 40 + 111

= 37 x 30 x ....... x 40 + 37 x 3

\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)

Bài 46 :

a ) số thứ nhất là n số thứ 2 là n+1 
tích của chúng là 
n(n+1) 
nếu n = 2k ( tức n là số chẵn) 
tích của chúng là 
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là 
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn 

Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2

b ) Nếu n là số lẻ thì : n + 3 là số chẵn 

Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2

Nếu n là số chẵn thì :

n . ( n + 3 ) luôn chi hết cho 2 

c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6 

Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7

Vì 1 ; 3 ; 7 không chia hết cho 2 

Vậy n2 + n + 1 không chia hết cho 2 

29 tháng 7 2015

2 Số không chia hết cho 3 thì có dư là 1 và 2

Gọi 2 số đó là 3k+1 và 3k+2 (k\(\in\)N)

Tổng 2 số đó là:  3k+1 + 3k+2 = 3k + 3k + 3 = 3(2k+1) chia hết cho 3

Vậy nếu 2 số tự nhiên ko chia hết cho 3 mà khi chia cho 3 có số dư khác nhau thì tổng của chúng chia hết cho 3 

Nhấn đúng cho mk nha!!!!!!!!!!