Tim p thuộc Z để :p2+2p+5 chia hết cho p+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p^2+2p+5=p^2+4p-2p-8+13=\left(p^2+4p\right)-\left(2p+8\right)+13\)
\(=p\left(p+4\right)-2\left(p+4\right)+13=\left(p-2\right)\left(p+4\right)+13\)
Vì \(\left(p-2\right)\left(p+4\right)⋮p+4\)\(\Rightarrow\)Để \(p^2+2p+5⋮p+4\)thì \(13⋮p+4\)
\(\Rightarrow p+4\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)\(\Rightarrow p\in\left\{-17;-5;-3;9\right\}\)
Vậy \(p\in\left\{-17;-5;-3;9\right\}\)
n-6 chia hết cho n-1
=>n-1-5 chia hết cho n-1
=>5 chí hết ccho n-1
=>n-1\(\in\)Ư(5)={-1;1;-5;5}
=>n\(\in\){0;2;-4;6}
n-5 chia hết cho n-2
=>n-2-3 chia hết cho n-2
=>3 chia hết cho n-2
=>n-2\(\in\)Ư(3)={-1;1;-3;3}
=>n\(\in\){1;3;-1;5}
(n - 6) = (n - 1) - 5
Ta có: (n - 1) - 5 chia hết cho (n - 1) => 5 chia hết cho (n - 1) => (n - 1) E Ư(5)
Phần còn lại bn tự làm nha
a) Ta có: \(\frac{8n+5}{4n+1}=\frac{\left(8n+2\right)+3}{4n+1}=2+\frac{3}{4n+1}\)
Để BT nguyên
=> \(\frac{3}{4n+1}\inℤ\)<=> \(4n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Mà \(4n+1\equiv1\left(mod4\right)\)
=> \(4n+1\in\left\{1;-3\right\}\Rightarrow n\in\left\{0;-1\right\}\)
b) Ta có: \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮55\)
=> đpcm