K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

bài 2 đừng xem bảng số nguyên tố nha mn

26 tháng 10 2016

3) aaaa=a.1111=a.11.101

Để aaaa chỉ có 2 ước là các số nguyên tố (11 và 101 )thì a=1

vậy aaaa=1111

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.

Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

TH1: $p=6k+1$ thì:

$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$

Nếu $k$ lẻ thì $3k+1$ chẵn.

$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$

Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$

TH2: $p=6k+5$

$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn

$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$

Nếu $k$ lẻ thì $k+1$ chẵn

$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$

a, gọi ƯCLN(n,2n-1) là d (d thuộc N)

Ta có: n chia hết cho d 

=> 2n chia hết cho d 

2n-1 chia hết cho d 

=> 2n-1-2n chia hết cho d

=> 1 chia hết cho d 

=> d thuộc ước của 1

=> d=1 

=> n bà 2n+1 nguyên tố cùng nhau

6 tháng 10 2018

Mình cũng có câu hỏi giống bạn nè

27 tháng 12 2017

khó quá khó tìm,k đi!!!!!