K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2022

Mik nghĩ là : \(SM\perp\) đáy và MK là đường cao của \(\Delta SMQ\)

7 tháng 5 2022

\(MQ=\sqrt{MP^2-MN^2}=\sqrt{16a^2-4a^2}=2\sqrt{3}a=SM\)

\(\Delta SMN\perp\) tại M ; \(MH\perp SN\) có : 

\(MH=\dfrac{SM.MN}{\sqrt{SM^2+MN^2}}=\dfrac{2a\sqrt{3}.2a}{\sqrt{12a^2+4a^2}}=\sqrt{3}a\)

Làm tương tự ; tính được : \(MK=\sqrt{6}a\) . Cần tính HK

Tính được : \(SH=3a;MK=SK=\sqrt{6}a\) . 

Tính được : \(SN=NQ=4a;SQ=2\sqrt{6}a\) \(\Rightarrow cos\widehat{S}=\dfrac{\sqrt{6}}{4}\)  . Khi đó : 

\(HK^2=SK^2+SH^2-2SK.SH.cos\widehat{S}=15a^2-6\sqrt{6}a^2.\dfrac{\sqrt{6}}{4}=6a^2\Rightarrow HK=\sqrt{6}a\)

\(\Delta MHK\) có : p = \(\dfrac{MH+HK+MK}{2}=\dfrac{2\sqrt{6}+\sqrt{3}}{2}a\)

Suy ra : \(S=\sqrt{p\left(p-MH\right)\left(p-MK\right)\left(p-HK\right)}=\dfrac{3\sqrt{7}}{4}a^2\)

19 tháng 2 2017

16 tháng 9 2018

Phương pháp:

Tính thể tích  V S . A B C

Tính thể tích  V S . A M N  theo công thức tỉ lệ thể tích

Tính thể tích  V A . B C M N  và suy ra kết luận

Cách giải:

Xét tam giác SAB và SAC là các tam giác vuông tại A có hai cạnh góc vuông là a và 2a nên

Tam giác SAB vuông tại có đường cao AM

Khi đó  

Tương tự 

Lại có 

Mặt khác 

Do đó

Chọn C.

18 tháng 2 2018

Đáp án A

29 tháng 3 2018

31 tháng 8 2018

Đáp án A

20 tháng 1 2018

6 tháng 1 2017