K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

21 tháng 8 2016

\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)

Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)

\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)

bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)

22 tháng 8 2016

Dòng kế cuối sửa lại thành \(\frac{8\left(z+2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\) nhé.

3 tháng 10 2018

sửa đề: z+4>0

3 tháng 10 2018

Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0

a + b + c = 6

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)

\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)

Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)

1 tháng 3 2018

Ta có A=\(\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{z}}+\frac{z^2}{z\sqrt{x}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y}+y\sqrt{z}+z\sqrt{x}}\)

Áp dụng BĐt bu-nhi-a, ta có 

\(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\le\sqrt{\left(x+y+z\right)\left(xy+yz+zx\right)}\le\sqrt{\frac{1}{3}\left(x+y+z\right)^2\left(x+y+z\right)}\)

\(\Rightarrow A\ge\sqrt{\frac{x+y+z}{\frac{1}{3}}}=\sqrt{3\left(x+y+z\right)}\ge\sqrt{9}=3\)

=> A>=3 (ĐPCM)

Dấu = xảy ra <=> x=y=z=1

^^