Cho nữa đường tròn (O) đường kính AB. C là 1 điểm nằm giữa O,A . Đường vuông góc với AB tại C cắt nữa đường tròn tại I. K là một điểm bất kì nằm trên đoạn CI ( K # C và I ) .Tia AK cắt nữa đường tròn (O) tại M . Tia BM cắt tia CI tại D a) Chứng minh các tứ giác ACMD,BCKM nội tiếp đường tròn b) CK.CD=CA.CB C) gọi N là giao điểm của AD với đường tròn (O) . Chứng minh B,K,L thẳng hàng d) tâm đường tròn ngoại tiếp ∆AKD nằm trên 1 đường thẳng cố định khi K di động trên đoạn CI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
góc AMB=1/2*sđ cung AB=90 độ
=>AM vuông góc BD
góc ACD=góc AMD=90 độ
=>ACMD nội tiếp
góc KCB+góc KMB=180 độ
=>BMKC nội tiếp
2: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có
góc CAK=góc CDB
=>ΔCAK đồng dạng với ΔCDB
=>CA/CD=CK/CB
=>CA*CB=CD*CK
a) Xét (O) có
ΔAMB nội tiếp đường tròn(A,M,B\(\in\)(O))
AB là đường kính(gt)
Do đó: ΔMAB vuông tại M(Định lí)
\(\Leftrightarrow AM\perp MB\) tại M
\(\Leftrightarrow AM\perp BD\) tại M
\(\Leftrightarrow\widehat{AMD}=90^0\)
Xét tứ giác ADMC có
\(\widehat{AMD}=\widehat{ACD}\left(=90^0\right)\)
\(\widehat{AMD}\) và \(\widehat{ACD}\) là hai góc cùng nhìn cạnh AD
Do đó: ADMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Vi NN nằm trên (O)(O) nên ˆNAB=90∘NAB^=90∘(1) ⇒NB⊥DA⇒NB⊥DA. Mà DC⊥AB,AM⊥DBDC⊥AB,AM⊥DB ⇒K⇒K Là trực tâm tam giác DABDAB suy ra BK⊥ADBK⊥AD (2). Từ (1) và (2) suy ra B,N,KB,N,K thẳng hàng
a: góc AEB=1/2*sđ cung AB=90 độ
Vì góc DHB+góc DEB=180 độ
nên DHBE nội tiếp
b: Xét ΔADC và ΔACE co
góc ACH=góc AEC(=góc ABC)
góc DAC chung
=>ΔADC đồng dạng với ΔACE
=>DC/EC=AD/AC
=>DC*AC=EC*AD
a: Xét tứ giác BMKC có \(\widehat{BMK}+\widehat{KCB}=180^0\)
nên BMKC là tứ giác nội tiếp
b: Xét ΔBMA vuông tại M và ΔBCD vuông tại C có
góc B chung
Do đó: ΔBMA\(\sim\)ΔBCD
Suy ra: BM/BC=BA/BD
hay BM/BA=BC/BD
=>ΔBMC\(\sim\)ΔBAD
nên \(\widehat{BMC}=\widehat{BAD}\)
a: góc ACD=góc AMD=90 độ
=>ACMD nội tiếp
góc BMK+góc BCK=180 độ
=>BMKC nội tiếp
b: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có
góc CAK=góc CDB
=>ΔCAK đồng dạng với ΔCDB
=>CA/CD=CK/BC
=>CA*CB=CD*CK