Tìm số chính phương có 4 chữ số, biết rằng khi tăng thêm mỗi chữ số 1 đơn vị thì số mới được tạo thành cũng là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là A=ab2
Nếu A là bình phương 1 số 3 chữ số thì A có 5 CS loại
Nên số đó là số 2 CS
Có ab2=A
Có A+1111=(ab+k)2
1111+A=ab2+2ab*k+k2
1111=k2.+2ab*k=k(2ab+k)
Có k<30 vì k=30 thì k2+ab*k >1111
k>10 vì k=10 thì k2+ab*k<1111
1111=101*11 nên
k=11 (do k<30)
suy ra 2ab+11=101
ab=45
Gọi số cần tìm là abcd
Ta có: abcd=m2
(a-1)(b-1)(c-1)(d-1)=m2
=>(a-1).1000+(b-1).100+(c-1).10+(d-1)=n2
=>a.1000-1000+b.100-100+c.10-10+d-1=n2
=>(a.1000+b.100+c.10+d)-(1000+100+10+1)=n2
=>abcd-1111=n2
=>a2-1111=n2
=>m2-n2=1111
=>(m-n).(m+n)=1111=11.101
Vì m-n<m+n=>m-n=11
M+n=101
=>m=(101+11):2=56
n=56-11=45
=>abcd=m2=562=3136
Vậy số cần tìm là 3136
Gọi số cần tìm là abcd
Ta có: abcd=a2
(a-1)(b-1)(c-1)(d-1)=b2
=>(a-1).1000+(b-1).100+(c-1).10+(d-1)=b2
=>a.1000-1000+b.100-100+c.10-10+d-1=b2
=>(a.1000+b.100+c.10+d)-(1000+100+10+1)=b2
=>abcd-1111=b2
=>a2-1111=b2
=>a2-b2=1111
=>(a-b).(a+b)=1111=11.101
Vì a-b<a+b
=>a-b=11
a+b=101
=>a=(101+11):2=56
b=56-11=45
=>abcd=a2=562=3136
Vậy số cần tìm là 3136
Tính không làm đâu. Do làm biếng mà thấy không ai giúp hết nên để t giúp vậy
Gọi số chính phương cần tìm là abcd ta có
abcd = 1000a + 100b + 10c + d = X2
(a+1)(b+1)(c+1)(d+1) = 1000(a+1) + 100(b+1) + 10(c+1) + (d+1) =Y2
=> Y2 - X2 = (Y - X)(Y + X) = 1111 = 101 \(\times\)11
\(\Rightarrow\hept{\begin{cases}Y-X=1\\Y+X=1111\end{cases}OR\hept{\begin{cases}Y-X=11\\Y+X=101\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}Y=556\\X=555\end{cases}\left(loai\right)or\hept{\begin{cases}Y=56\\X=45\end{cases}\left(nhan\right)}}\)
Vậy số cần tìm là \(45^2=2025\)
số chính phương mà kêu toán lp 9 ak