Cho \(P=-\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Tìm Max \(Q=\frac{2}{P}+\sqrt{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q=\(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\) điều kiện x>=0
=\(\frac{x-1+x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
ta thấy cả tử và mẫu đề >=0=> Q>=0
dấu = xảy ra khi x=0
=> Q=0 khi x=0
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
a/ Bạn tự tìm ĐKXĐ
\(A=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
Xét
\(=\frac{\sqrt{x}-x\sqrt{y}+1-\sqrt{xy}+xy+\sqrt{xy}+x\sqrt{y}+\sqrt{x}+1-xy}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)
\(=\frac{2\sqrt{x}+2}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\)
\(=\frac{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{xy}+\sqrt{x}\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)
\(=\frac{xy-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}-x\sqrt{y}+\sqrt{x}-\sqrt{xy}+1}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)
\(=\frac{-2\sqrt{xy}-2x\sqrt{y}}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}=\frac{-2\sqrt{xy}\left(\sqrt{x}+1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\)
\(\Rightarrow A=\frac{2\left(\sqrt{x}+1\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}:\frac{2\sqrt{xy}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}=\frac{1}{\sqrt{xy}}\)
b/ Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) với \(a=\frac{1}{\sqrt{x}},b=\frac{1}{\sqrt{y}}\) được :
\(A=\frac{1}{\sqrt{x}.\sqrt{y}}\le\frac{1}{4}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2=\frac{1}{4}.6^2=9\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}=\sqrt{y}\\\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\end{cases}}\Leftrightarrow x=y=\frac{1}{9}\)
Vậy ........................................................
\(Q=\frac{2x+2\sqrt{x}+2}{-\sqrt{x}}+\sqrt{x}\)
\(Q=-2\sqrt{x}-2-\frac{2}{\sqrt{x}}+\sqrt{x}\)
\(Q=-\sqrt{x}-\frac{2}{\sqrt{x}}-2\)
\(\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2}\Rightarrow-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)\le-2\sqrt{2}\)
\(\Rightarrow Q\le-2\sqrt{2}-2\)
\("="\Leftrightarrow x=\sqrt{2}\)
\(\frac{2}{P}+\sqrt{x}=\frac{-2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}+\sqrt{x}\)
= - \(2\sqrt{x}-2-\frac{2}{\sqrt{x}}+\sqrt{x}\)
= \(\frac{-2}{\sqrt{x}}-2-\sqrt{x}\le-2-2\sqrt{2}\)
Đạt được khi x = 2