các số tự nhiên z sao cho : z thuốc bôi của 11 va z thuộc ước của 33 thỏa mãn a chia hết cho b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)B(11)={11;22;33;44}
b)Ư(33)={1;3}
c)B(11) Ư(33)={11;33}
\(x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5x\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)
Do \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 5, một số chia hết cho 2 và một số chia hết cho 3\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2.3.5=30\)
Mặt khác: \(x\left(x-1\right)\left(x+1\right)\) là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow x\left(x-1\right)\left(x+1\right)⋮6\)\(\Rightarrow5x\left(x-1\right)\left(x+1\right)⋮5.6=30\)
\(\Rightarrow x^5-x=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)⋮30\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}y^5-y⋮30\\z^5-z⋮30\end{matrix}\right.\)
\(\Rightarrow\left(x^5+y^5+z^5\right)-\left(x+y+z\right)⋮30\)
Mà \(x+y+z=2010⋮30\)
\(\Rightarrow x^5+y^5+z^5⋮30\)
Xét 6(a+2b )- (6a+b) = (6a + 12b )- (6a+b)=11b
vì 11 chia hết cho 11 nên 11b chia hết cho 11=>6(a+2b )- (6a+b) chia hết cho 11 mà 6 (a+2b) chia hết cho 11 (vì a + 2b chia hết cho 11)
=>6a+b chia hết cho 11 (DCCM )
tuổi mẹ hiện nay gấp 2,3 lần tuổi con. 16 năm trước tuổi mẹ gấp 7,5 lần tuổi con. hỏi mấy năm sau thì tuổi mẹ gấp đôi tuổi con
Có : ( 16a + 17b ) ( 17a + 16b ) : 11 ( vì 11 là số nguyên tố )
= 16a + 17b : 11
17a + 16b : 11
=G/s 16a + 17b : 11(1)
Mà ( 16a + 17b ) + ( 17a + 16b ) = ( 33a + 33b ) = 11 ( 3a + 3b ) : 11
= 17a + 16b : 11(2)
Từ ( 1 ) , ( 2 ) = ( 16a + 17b ) ( 17a +16b ) : 121
Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\)
\(\Rightarrow\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
Giả sử \(16a+17b⋮11\)
\(\Rightarrow16a+17b+17a+16b=\left(16a+17a\right)+\left(17b+16b\right)=33a+33b=33\left(a+b\right)\)
Vì \(33⋮11\) nên \(33\left(a+b\right)⋮11\)
Mà \(16a+17b⋮11\)
\(\Rightarrow17a+16b⋮11\)
Lại có: 11 là số nguyên tố
\(\Rightarrow\left(16a+17b\right)\left(17a+16b\right)⋮11^2=121\)
Vậy \(\left(16a+17b\right)\left(17a+16b\right)⋮121\).
b)\(2n-1⋮n+1\)\(\left(n\inℤ\right)\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow2.\left(n+1\right)-3⋮n+1\)mà\(2.\left(n+1\right)⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n+1\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{-2;0;-4;2\right\}\)
Vậy \(n\in\left\{-2;0;-4;2\right\}\)
Chúc bạn học tốt !
đầu tiên , ta có :
Ư của 33 chỉ có :
1 , 3 , 11 , 33
B của 11 là :
11 , 33 , 22 , ..........
suy ra Z là 11 và 33
đ/s : 11 và 33