Hãy chứng tỏ :
a) (3^3)^3 = 3^9
b) (a^m)^n= a^m .n
So sánh
3^34 và 2^51
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(5^{333}=\left(5^3\right)^{111}=125^{111}\)
\(3^{555}=\left(3^5\right)^{111}=243^{111}\)
Vì \(125^{111}< 243^{111}\Rightarrow5^{333}< 3^{555}\)
Vậy \(125^{111}< 243^{111}\Rightarrow5^{333}< 3^{555}\)
1) Ta có : (an)m = an.an...an = an.m (đpcm)
m thừa số
2) a. Ta có 5333 = (53)111 = 125111
Lại có 3555 = (35)111 = 243111
Vì 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b. 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
3) Ta có 32008 = (34)502 = 81502
Vì ta có 81.81 = 6561 (có 4 chữ số)
=> 81.81.81 = 531441 (có 6 chữ số)
Nhận thấy tích của x số 81 là số có 2x chữ số
mà 81502 có 502 số 81 và số đó có 502 . 2 = 1004 chữ số < 1005
=> 32008 là số có ít hơn 1005 chữ số
b)Ta có:5333=(53)111=125111<243111=(35)111=3555
Ta có:2400<2800=4400
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
\(M=2+2^3+2^5+2^7+....+2^{51}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)
\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)
\(=10+2^4.10+...+2^{48}.10\)
\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)
\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)
\(M=2+2^3+2^5+2^7+....+2^{51}.\)
\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)
\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)
\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)
\(=12+2^4.42+....+2^{46}.42\)
\(=12+7.3.2\left(2^4+...+2^{46}\right)\)
\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)
\(=10+7.3.2\left(2^4+....+2^{46}\right)\)
Ta có: \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7
Suy M không chia hết cho 7
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
a) -8m + 2
Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:
-8m + 2 < - 8n + 2
b) 6n - 1 với 6m + 2
6n - 1 < 6m + 2
1)
\(\left(3^3\right)^3\)=\(3^{3\cdot3}=3^9\)
\(\left(a^m\right)^n=a^{m\cdot n}\)
2)
\(3^{34}=3^{2\cdot17}=\left(3^2\right)^{17}=9^{17}\)
\(2^{51}=2^{3\cdot17}=\left(2^3\right)^{17}=8^{17}\)
Vì \(9^{17}>8^{17}\)
Nên\(3^{34}>2^{51}\)