1. x2-4x-y2+4
2. (x-y)2-(x+y)2
Phan tich da thuc thanh nhan tu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
4x(x+y)(x+y+z)(x+z)+(yz)^2
=(2x(x+y+z))(2(x+y)(x+z)+(yz)^2
=(2x^2+2xy+2xz)(2x^2+2xy+2xz+2yz)+(yz)^2
Đặt t=C
=(t-yz)(t+yz)-(yz)^2
=t^2-(yz)^2+(yz)^2=t^2=(2x^2+2xy+2xz+yz)^2
=
\(4x^2-y^2+8\left(y-2\right)=4x^2-y^2+8y-16=4x^2-\left(y-4\right)^2=\left(2x-y+4\right)\left(2x+y-4\right)\)
\((4x-y)(a+b)(4x-y)(c-1)\)
\(=\left(4x-y\right)\left(4x-y\right)=\left(4x-y\right)^{1+1}=\left(4y-2\right)^2\)
\(=\left(a+b\right)\left(4x-y\right)^2\left(c-1\right)\)
(4x-y)(a+b)(4x-y)(c-1)
= ( 4x - y ) ( 4x - y ) = ( 4x - y ) 1 + 1 = ( 4y - 2 ) 2
= (a + b ) ( 4x - y )2 ( c - 1 )
Lưu ý rằng ba điều kiện đầu tiên yếu tố như (x + 1) ^ 2, do đó chúng ta có:
x^2 + 2x + 1 - y^2 = (x + 1)^2 - y^2.
(x + 1)^2 - y^2 = [(x + 1) + y][(x + 1) - y], từ a^2 - b^2 = (a + b)(a - b)
= (x + y + 1)(x - y + 1).
1. = (x-2)^2 - y^2 = (x - 2 - y)(x-2+y)
2. = (x-y-x-y)(x-y+x+y) = 2(-y)2x = -4xy
1=-(y^6-x^2-4x)