1. Phâm tích thành nhân tử:
x2 - 4y2 + 4x + 8y.
2 Tìm x biết
5x3 - 3x2 + 10x -6 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)
= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)
Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)
⇒x = 3/5
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
\(=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\)
`x^2-2x-4y^2+4y`
`=(x^2-4y^2)-2x+4y`
`=(x-2y)(x+2y)-2(x-2y)`
`=(x-2y)(x+2y-2)`
x2-10x+16=x2-8x-2x+16=(x2-8x)-(2x-16)=x(x-8)-2(x-8)=(x-8)(x-2)
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
1. = (x-2y)(x+2y) + 4(x+2y)
=(x+2y)(x-2y+4)
2. (5x^3+10x) - (3x^2-6) = 0
5x(x^2 + 2) - 3(x^2 +2) =0
(x^2 +2)(5x-3) =0
TH1: x^2 +2 = 0
x^2 = -2 (loại)
TH2: 5x-3 = 0
5x = 3
x= 3/5
vậy x = 3/5