x3-19x+30
ptnt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x1, x2, x3 là 3 nghiệm của phương trình x^3-19x-30=0. Giá trị của Bt B= x1^2 + x2^2 + x3^2 là...
x3 - 19x - 30 = 0
<=> x3 - 5x2 + 5x2 - 25x + 6x - 30 = 0
<=> x2( x - 5 ) + 5x( x - 5 ) + 6( x - 5 ) = 0
<=> ( x - 5 )( x2 + 5x + 6 ) = 0
<=> ( x - 5 )( x2 + 3x + 2x + 6 ) = 0
<=> ( x - 5 )[ x( x + 3 ) + 2( x + 3 ) ] = 0
<=> ( x - 5 )( x + 3 )( x + 2 ) = 0
đến đây dễ rồi :)
\(x^3-19x-30=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x+2=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=-2\\x=-3\end{cases}}}\)
Vậy B=x12+x22+x32
B=52+(-2)2+(-3)2
B=25+4+9
B=38
#H
Đáp án là C
Phương trình tiếp tuyến cần tìm có dạng: y = 9 x + b .
- Hệ phương trình sau có nghiệm: x 3 − 3 x + 2 = 9 x + b 3 x 2 − 3 = 9 → x = 2 ⇒ b = − 14 x = − 2 ⇒ b = 18 .
a) \(3x^2-6xy=3x\left(x-2y\right)\)
b) \(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
c) \(=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x-3\right)\)
d) \(=2x\left(3x-5\right)-3\left(3x-5\right)=\left(3x-5\right)\left(2x-3\right)\)
\(a,=3x\left(x-2y\right)\\ b,=x\left(x-3\right)^2\\ c,Sửa:x^2-2xy-3x+6y=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x-3\right)\\ d,=\left(3x-5\right)\left(2x-3\right)\)
\(a,=3x^3y^3-3x^2y^3+3x^2y^4+3xy^5\\ b,=\left(2x^3-6x^2+10x-3x^2+9x-15\right):\left(x^2-3x+5\right)\\ =\left[2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)\right]:\left(x^2-3x+5\right)\\ =2x-3\\ c,=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)=x^2+1\)
x3 - 9x2 + 19x - 11 = 0
<=> (x - 1)(x2 - 8x + 11) = 0
<=> x - 1 = 0
<=> x = 1
\(a,=4x^2+3xy-y^2+4xy-4x^2=7xy-y^2\\ b,=x^2-9-x^3+3x+x^2-3=-x^3+2x^2+3x-12\\ c,=-2x^2+12x-18+5x^2+4x-1=3x^2+16x-19\\ d,=8x^3+1-3x^3+6x^2=5x^3+6x^2+1\\ e,=\left(3x^2+4x+15x+20\right):\left(3x+4\right)\\ =\left(3x+4\right)\left(x+5\right):\left(3x+4\right)\\ =x+5\\ f,=\left(x^3+4x^2-3x+3x^2+12x-9+3x+3\right):\left(x^2+4x-3\right)\\ =\left[\left(x^2+4x-3\right)\left(x+3\right)+3x+3\right]:\left(x^2+4x-3\right)\\ =x+3\left(dư.3x+3\right)\)
x3-19x+30=\(x^3-3x^2+3x^2-9x-10x+30\)
=\(x^2\left(x-3\right)+x\left(x-3\right)-10\left(x-3\right)\)
=\(\left(x-3\right)\left(x^2+x-10\right)\)