phân tích đa thức thành nhân tử
ab^3-ac^3+bc^3-a^3b+ca^3-b^3c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
\(=\left(ca^3-ac^3\right)-\left(ba^3-bc^3\right)+\left(ab^3-cb^3\right)\)
\(=ac\left(a^2-c^2\right)-b\left(a^3-c^3\right)+b^3\left(a-c\right)\)
\(=ac\left(a-c\right)\left(a+c\right)-b\left(a-c\right)\left(a^2+ac+c^2\right)+b^3\left(a-c\right)\)
\(=\left(a-c\right)\left(a^2c+ac^2-a^2b-abc-c^2b+b^3\right)\)
\(=\left(a-c\right)\left[\left(a^2c-a^2b\right)+\left(ac^2-abc\right)-\left(c^2b-b^3\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(c-b\right)+ac\left(c-b\right)-b\left(c^2-b^2\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(c-b\right)+ac\left(c-b\right)-b\left(c-b\right)\left(c+b\right)\right]\)
\(=\left(a-c\right)\left(c-b\right)\left(a^2+ac-bc-b^2\right)\)
\(=\left(a-c\right)\left(c-b\right)\left[\left(a^2-b^2\right)+\left(ac-bc\right)\right]\)
\(=\left(a-c\right)\left(c-b\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(\left(a-c\right)\left(c-b\right)\left(a-b\right)\left(a+b+c\right)\)
ai có thể giảng cho mình dạng toán tìm số tự nhiên thỏa mãn đièu kiện chia hết ko
hãy nêu ra cách giải cụ thể cho câu sau 3a-11 chia hết cho a+2 tìm a
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)