K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

\(\text{Đặt }\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Khi đó : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\left(1\right);\)

\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{k\left(a+b+c\right)}=\frac{a+b+c}{k}\left(2\right)\)

Từ (1) và (2) => \(\frac{a^2}{x}+\frac{b^2}{y}=\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\left(\text{đpcm}\right)\)

18 tháng 11 2019

hình như bạn ghi sai đề rồi kìa

10 tháng 6 2021

Ta có :\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

Lại có \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

=> \(\left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2+\left(\frac{z}{c}\right)^2+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xyc}{abc}+\frac{2ayz}{abc}+\frac{2bxz}{abc}=1\)

=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2}{abc}\left(xyc+ayz+bxz\right)=1\)

=> \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(\text{vì }xyc+ayz+bxz=0\right)\)(đpcm)

7 tháng 4 2018

THam khảo tại đây:

Câu hỏi của Vũ khoa - Toán lớp 8 - Học toán với OnlineMath

7 tháng 4 2018

Cách đó k hay