chứng minh rằng n.(n+8).(n+13) chia hết cho 3 với mọi n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
Xét n chẵn => n(n+13) chẵn nên chia hết cho 2
Xét n lẻ => n+13 chẵn => n(n+13) chẵn nên chia hết cho 2
chúc bạn học tốt
^_^ !
m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
Xét tổng: A = 3m + 12n + 10m + n = 13m + 13n chia hết cho 13
CM theo chiều xuôi (có m + 4n chia hết cho 13, CM 10m + n chia hết cho 13):
A chia hết cho 13
Mà m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
=> 10m + n chia hết cho 13
CM theo chiều ngược:
A chia hết cho 13
Mà 10m + n chia hết cho 13
=> 3m + 12n chia hết cho 13
=> 3(m + 4n) chia hết cho 13
Mà (3,13) = 1
=> m + 4n chia hết cho 13
Vậy:.
Ta có: 10m+n chia hết cho 13
=>10m chia hết cho 13
mà 10 không chia hết cho 13 nên m chia hết cho 13
=>n chia hết cho 13 nên 4n chia hết cho 13
=>m+4n chia hết cho 13
=>đpcm(ghi lại đề)
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Nếu \(n⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)
Nếu n chia 3 dư 1 \(\Rightarrow n-1⋮3\Rightarrow n+8=\left(n-1\right)+9⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)
Nếu n chia 3 dư 2 \(\Rightarrow n-2⋮3\Rightarrow n+13=\left(n-2\right)+15⋮3\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\)
\(\Rightarrow n\left(n+8\right)\left(n+13\right)⋮3\forall n\in N\)