cho x>1 tìm max của A= 4x + \(\frac{25}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=4x+\frac{25}{x-1}=4\left(x-1\right)+\frac{25}{x-1}+4\)
Do x > 1 => x - 1 > 0
Áp dụng bđt cosi cho 2 số dương 4(x - 1) và 25/(x - 1)
Ta có: \(4\left(x-1\right)+\frac{25}{x-1}\ge2\sqrt{4\left(x-1\right)\cdot\frac{25}{x-1}}=2.10=20\)
=> \(4\left(x-1\right)+\frac{25}{x-1}+4\ge20+4=24\)
Hay \(A\ge24\)
Dấu "=" xảy ra <=> \(4\left(x-1\right)=\frac{25}{x-1}\)
<=> \(\left(x-1\right)^2=\frac{25}{4}\) <=> \(\orbr{\begin{cases}x-1=\frac{5}{2}\\x-1=-\frac{5}{2}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{7}{2}\left(tm\right)\\x=-\frac{3}{2}\left(ktm\right)\end{cases}}\)
Vậy MinA = 24 khi x = 7/2
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
Cho x > 1. Tìm min P = 4x + 25/x - 1
Ta có:
P=4(x-1)+25/(x-1)+4
>=2 căn [4(x-1).25/(x-1)]+4=25
Dấu '=' khi 4(x-1)=25/(x-1)=>(x-1)^2=25/4=>x-1=5/2=>x=7/2
A=\(4\left(x-1\right)+\frac{25}{x-1}+4\)
Mà theo cô-si ta được \(4\left(x-1\right)+\frac{25}{x-1}\ge2\sqrt{4\left(x-1\right)\cdot\frac{25}{x-1}}=2\cdot10=20\)
nên A\(\ge\)20+4=24
dấu bằng xảy ra khi 4(x-1)=25/(x-1)...