cho x>1 tìm max của A= 4x + \(\frac{25}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1;y\ge25\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)
Vì x>=1,y>=25 => x-1>=0,y-25>=0
=> D >= 0
Dấu "=" xảy ra <=> x=1,y=25
Vậy MinD=0 khi x=1,y=25
Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)
=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)
Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)
Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:
\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)
=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)
Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)
Dấu "=" xảy ra <=> x=2,y=50
Vậy MaxD = 1/5 khi x=2,y=50
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
A = (4x + 3)/(x² + 1)
CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1)
Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn :
(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d²
<=> a²d² - 2.ad.bc + b²c² ≥ 0
<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM
- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d
- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²)
<=> (4x + 3)² ≤ 25(x² + 1)
<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1)
<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1)
a) Điều kiện: \(x\ne\left\{0;\pm2\right\}\)
\(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=[\frac{x^2}{x.\left(x-2\right).\left(x+2\right)}-\frac{6}{3.\left(x-2\right)}+\frac{1}{x+2}]:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{x-2.\left(x+2\right)+x-2}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)
\(=\frac{6}{\left(x-2\right).\left(x+2\right)}.\frac{x+2}{6}\)
\(=-\frac{1}{x-2}\)
b) \(A\) \(Max\)
\(\Rightarrow-\frac{1}{x-2}Max\)
\(\Rightarrow\frac{1}{x-2}Min\)
\(\Rightarrow\left(x-2\right)\) \(Max\)
\(\Rightarrow x\) \(Max\)
\(\Rightarrow x\in\varnothing\)
A=\(4\left(x-1\right)+\frac{25}{x-1}+4\)
Mà theo cô-si ta được \(4\left(x-1\right)+\frac{25}{x-1}\ge2\sqrt{4\left(x-1\right)\cdot\frac{25}{x-1}}=2\cdot10=20\)
nên A\(\ge\)20+4=24
dấu bằng xảy ra khi 4(x-1)=25/(x-1)...