Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )\(A=\frac{x^2+4x+4}{x^2-4}=\frac{\left(x+2\right)^2}{x^2-2^2}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}=\frac{5}{3}\)
<=> (x + 2).3 = (x - 2).5
<=> 3x + 6 = 5x - 10
<=> 3x - 5x = - 10 - 6
<=> - 2x = - 16
=> x = 8
b ) \(\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
đến đây tự tìm đc
Bài 2 lớp 8 ko làm đc thì đi chết đi
Bài 1:
a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)
\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)
\(\Rightarrow16x-5=x-2\)
\(\Rightarrow16x-x=5-2\)
\(\Rightarrow15x=3\)
\(\Rightarrow x=\dfrac{15}{3}=5\)
b) \(12x^2-4x\left(3x+5\right)=10x-17\)
\(\Rightarrow12x^2-12x^2-20x=10x-17\)
\(\Rightarrow-20x=10x-17\)
\(\Rightarrow-20x-10x=-17\)
\(\Rightarrow-30x=-17\)
\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)
c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)
\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)
\(\Rightarrow-8x=12\)
\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)
Bài 2:
a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)
\(=x^2-7x+5x-35-7x^2+21x\)
\(=-6x^2+19x-35\)
b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)
\(=x^3-x^2-2x-x^2+x-5x-5\)
\(=x^3-2x^2-6x-5\)
c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)
\(=x^2-7x-5x+35-x^2-3x+4x-12\)
\(=11x+23\)
d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)
\(=x^2-2x-x+2-x^2+2x+5x+10\)
\(=4x+12\)
bài 1
tìm gtng và gtln
d=-4x^2 -4x +3
c= 9x^2 +6x +2
e=25x^2 +16x +4
bài 2 cho đa thức x^4 - x^3 +6x^2 -x +a chia cho x^2 -x +5 tìm a để số dư bằng 0
botay.com.vn
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1.
a) -2x( -3x + 2 ) - ( x + 2 )2
= 6x2 - 4x - ( x2 + 4x + 4 )
= 6x2 - 4x - x2 - 4x - 4
= 5x2 - 8x - 4
b) ( x + 2 )( x2 - 2x + 4 ) - 2( x + 1 )( 1 - x )
= x3 + 8 + 2( x + 1 )( x - 1 )
= x3 + 8 + 2( x2 - 1 )
= x3 + 8 + 2x2 - 2
= x3 + 2x2 + 6
c) ( 2x - 1 )2 - 2( 4x2 - 1 ) + ( 2x + 1 )2
= 4x2 - 4x + 1 - 8x2 + 2 + 4x2 + 4x + 1
= 4
d) x2 - 3x + xy - 3y
= x( x - 3 ) + y( x - 3 )
= ( x - 3 )( x + y )
Bài 2.
a) 4x2 - 4xy + y2 = ( 2x - y )2
b) 9x3 - 9x2y - 4x + 4y
= 9x2( x - y ) - 4( x - y )
= ( x - y )( 9x2 - 4 )
= ( x - y )( 3x - 2 )( 3x + 2 )
c) x3 + 2 + 3( x3 - 2 )
= x3 + 2 + 3x3 - 6
= 4x3 - 4
= 4( x3 - 1 )
= 4( x - 1 )( x2 + x + 1 )
Bài 3.
2( x - 2 ) = x2 - 4x + 4
⇔ ( x - 2 )2 - 2( x - 2 ) = 0
⇔ ( x - 2 )( x - 2 - 2 ) = 0
⇔ ( x - 2 )( x - 4 ) = 0
⇔ x = 2 hoặc x = 4
\(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-8x+16=4\)
\(\Leftrightarrow\left(x-2\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=4\\x-2=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}\)
Vậy...
\(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow x^2-13x+22=0\)
\(\Leftrightarrow\left(x+\frac{13}{2}\right)^2=\frac{81}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{-21}{2}\end{cases}}\)
Vậy...
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-17x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
c: =>24x^2+16x-9x-6-4x^2-16x-7x-28=20x^2-4x+5x-1
=>-16x-34=x-1
=>-17x=33
=>x=-33/17
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
e: =>8x+16-5x^2-10x+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
f: =>4(x^2+4x-5)-x^2-7x-10=3x^2+3x-6
=>4x^2+16x-20-4x^2-10x+4=0
=>6x=16
=>x=8/3
a: A=x+3+|x-3|
=x+3+3-x(x<=3)
=6
b:\(B=\sqrt{x^2+4x+4}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
=x+2-x=2
c: \(C=\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
\(=\dfrac{\left|x-1\right|}{x-1}=\dfrac{x-1}{x-1}=1\)
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
a) \(x^2+2x^2+x=x\left(x+2x+1\right)=x\left(x+1\right)^2\)
b) \(xy+y^2-x-y=\left(xy-x\right)+y^2-y=x\left(y-1\right)+y\left(y-1\right)=\left(y-1\right)\left(x+y\right)\)mấy câu sau bạn làm tương tự nhé, đặt biến x với x và y với y là được. có gì ib face cho mình
có gì sai xót mong m.n bỏ qua và nhắc nhở ạ
Bài 1 :
a, \(A=\frac{4x^2}{4-x^2}+\frac{2+x}{2-x}-\frac{2-x}{x+2}\)ĐK : \(x\ne\pm2\)
\(=\frac{4x^2+\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+x^2+4x+4-\left(x^2-4x+4\right)}{\left(2-x\right)\left(x+2\right)}\)
\(=\frac{5x^2+4x+4-x^2+4x-4}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+8x}{\left(2-x\right)\left(x+2\right)}=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}=\frac{4x}{2-x}\)
b, Ta có P = A : B hay \(\frac{4x}{2-x}.\frac{x\left(2-x\right)}{x-3}=\frac{4x^2}{x-3}< 0\)
\(\Rightarrow x-3< 0\)do \(4x^2\ge0\forall x\)
\(\Leftrightarrow x< 3\)
Kết hợp với giả thiết ta có : \(x< 3;x\ne\pm2\)
quên mất, Với P = -1 hay \(\frac{4x^2}{x-3}=-1\Rightarrow4x^2=-x+3\Leftrightarrow4x^2+x-3=0\)
\(\Leftrightarrow4x^2+4x-3x-3=0\Leftrightarrow4x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-1\end{cases}}\)
Vậy với P = -1 thì x = -1 ; x = 3/4
Bài 2 :
a, \(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)ĐK : \(x\ne\pm3\)
\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}=\left(\frac{-3}{x+3}\right).\frac{x+3}{3x^2}=\frac{-1}{x^2}\)
b, Ta có : \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
TH1 : Thay x = 1 vào biểu thức trên ta được : \(\frac{-1}{1}=-1\)tương tự với 1
TH2 : ...
c, Ta có : A < -1 hay \(\frac{-1}{x^2}< 1\Leftrightarrow\frac{-1}{x^2}-1< 0\Leftrightarrow\frac{-1-x^2}{x^2}< 0\)
\(\Rightarrow-\left(x^2+1\right)< 0\)do \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2< -1\)( vô lí )
Vậy ko có giá trị x thỏa mãn A < -1
d, Ta có : \(A=\frac{x}{8}\)hay \(-\frac{1}{x^2}=\frac{x}{8}\Rightarrow x^3=-8\Leftrightarrow x=-2\)
Vậy với A = x/8 thì x = -2