Cho tam giác ABC vuông tại A (AB<AC), đường cao AH (H thuộc BC). Qua C kẻ đường thẳng song song với AB cắt AH tại E. Kẻ HK vuông góc với AB tại K.
1. Chứng minh: AB.EC – AH.EH = HB.HC.
2. Chứng minh: AK.HK.AH.BC = HK2.HC2 + HB2.AK2.
3. Đường thẳng qua A song song với BC cắt EC tại D, HD cắt AC tại I. vẽ 3 đường cao AM, HN, IP của tam giác AIH. Chứng minh: ba điểm C, M, K thẳng hàng.
4. Chứng minh 3 điểm E, M, N thẳng hàng.
5. Qua B kẻ đường thẳng song song với AC cắt HD tại S, BP cắt HK tại O. chứng minh 3 điểm A, O, S thẳng hàng.