Chứng minh rằng nếu x+y=1 thì x2 + y2 \(\ge\) \(\dfrac{1}{2}\)
Mong mn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu x ≥ 2 thì: \(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}\) ≥ 2
Mong mn giúp đỡ.
VT=|căn(x-2)+1|+|căn (x-2)-1|
=|căn (x-2)+1|+|1-căn x-2|>=|căn(x-2)+1+1-căn(x-2)|=2
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
\(bx^2=ay^2\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\Rightarrow\left(\dfrac{x^2}{a}\right)^{1000}=\left(\dfrac{y^2}{b}\right)^{1000}=\left(\dfrac{1}{a+b}\right)^{1000}\)
\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}=\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}\)
\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}+\dfrac{1}{\left(a+b\right)^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\)
Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910
Chứng minh rằng nếu $a \ge b$, $x \ge y$ thì $\dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}2$.
ta có :
\(\frac{ax+by}{2}\ge\frac{a+b}{2}.\frac{x+y}{2}\Leftrightarrow2\left(ax+by\right)\ge\left(a+b\right)\left(x+y\right)\)
\(\Leftrightarrow2\left(ax+by\right)\ge ax+ay+bx+by\)
\(\Leftrightarrow ax-ay+by-bx\ge0\Leftrightarrow\left(a-b\right)\left(x-y\right)\ge0\)
Điều này đúng do giả thuyết \(a\ge b,x\ge y\)
Ta có \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}22ax+by≥ 2a+b. 2x+ y
\Leftrightarrow 2(ax+by) \ge (a + b)(x + y)⇔2(ax+by) ≥ (a+b)(x+y)
\Leftrightarrow 2(ax+by) \ge ax + ay + bx + by⇔2(ax+by) ≥ax+ay+bx+by
\Leftrightarrow ax + by - ay - bx \ge 0⇔ax+by−ay−bx ≥0
\Leftrightarrow (a - b)(x - y) \ge 0⇔(a−b)(x−y)≥0 (luôn đúng vì giả thiết a \ge ba≥b và x \ge yx≥y).
Vậy nếu a \ge ba≥b, x \ge yx≥y thì \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}22ax+by≥ 2a+b. 2x+ y.
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)
\(x+y=1\)
Áp dụng BĐT AM-GM, ta có:
\(\dfrac{x^2}{1}+\dfrac{y^2}{1}\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{1^2}{2}=\dfrac{1}{2}\)
--> \(x^2+y^2\ge\dfrac{1}{2}\)