\(\frac{1}{1007}+\frac{1}{1008}+....\frac{1}{1036}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1005}{1006}+\frac{1006}{1007}+\frac{1007}{1008}+\frac{1008}{1005}\) ta có :
\(A=\frac{1006-1}{1006}+\frac{1007-1}{1007}+\frac{1008-1}{1008}+\frac{1005+3}{1005}\)
\(A=\frac{1006}{1006}-\frac{1}{1006}+\frac{1007}{1007}-\frac{1}{1007}+\frac{1008}{1008}-\frac{1}{1008}+\frac{1005}{1005}+\frac{3}{1005}\)
\(A=1-\frac{1}{1006}+1-\frac{1}{1007}+1-\frac{1}{1008}+1+\frac{3}{1005}\)
\(A=\left(1+1+1+1\right)-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{3}{1005}\right)\)
\(A=4-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1005}-\frac{1}{1005}-\frac{1}{1005}\right)\)
\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]\)
Mà :
\(\frac{1}{1006}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1006}-\frac{1}{1005}< 0\) \(\left(1\right)\)
\(\frac{1}{1007}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1007}-\frac{1}{1005}< 0\) \(\left(2\right)\)
\(\frac{1}{1008}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1008}-\frac{1}{1005}< 0\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)< 0\)
\(\Rightarrow\)\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]>4\)
\(\Rightarrow\)\(A>4\) ( điều phải chứng minh )
Vậy \(A>4\)
Chúc bạn học tốt ~
\(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(P=\left(1+\frac{1}{3}+...+\frac{1}{2011}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}-1-\frac{1}{2}-...-\frac{1}{1006}\)
\(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\) (1)
\(Q=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\frac{P}{Q}=\frac{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}=1\)
\(B=\frac{1010+1007+\frac{2017}{113}+\frac{2017}{117}-\frac{1010}{119}-\frac{1007}{119}}{1010+1008+\frac{2018}{113}+\frac{2018}{117}-\frac{1010}{119}-\frac{1008}{119}}\)
\(B=\frac{2017+\frac{2017}{113}+\frac{2017}{117}-\frac{2017}{119}}{2018+\frac{2018}{113}+\frac{2018}{117}-\frac{2018}{119}}\)
\(B=\frac{2017.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}{2018.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)
\(B=\frac{2017}{2018}\)
Vậy \(B=\frac{2017}{2018}\)
Chúc bạn học tốt !!!
bạn kiểm tra lại đề nhé! vì số hạng tổng quát chẳng liên quan gì đến số hạng đầu
Có thể đề đúng là: \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(=\left(1+\frac{1}{3}+......+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+........+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+......+\frac{1}{2013}\)
\(=P\)
\(\Leftrightarrow S-P=0\)
\(\Leftrightarrow\left(S-P\right)^{2013}=0\)
Ta có: 1/1007+1/1008+...1/1036
=1/1 x ( 1/1007+1/1008+...+1/1036)
= 1/1 x (1-1/1007+1/1007-1/1008+1/1008-...-1/1036)
= 1/1 -x (1- 1/1036)
=1035/1036
đúng thì *cho mình nhé
Tính cái này đó hả? Bó tay