K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

bằng chính nó

12 tháng 10 2016
Thách đó àk
1 tháng 7 2016

Ta có: \(\frac{2003.2004}{2003.2004}=1\)

1+1=2

Vậy \(\frac{2003.2004}{2003.2004}\)+1 > \(\frac{2004}{2005}\)

7 tháng 1 2022

TL: dấu này >

Bài 7:

a: ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)

\(\dfrac{x+5}{2x-1}-\dfrac{1-2x}{x+5}-2=0\)

=>\(\dfrac{x+5}{2x-1}+\dfrac{2x-1}{x+5}-2=0\)

=>\(\dfrac{\left(x+5\right)^2+\left(2x-1\right)^2}{\left(2x-1\right)\left(x+5\right)}=2\)

=>\(\left(x+5\right)^2+\left(2x-1\right)^2=2\left(2x-1\right)\left(x+5\right)\)

=>\(x^2+10x+25+4x^2-4x+1=2\left(2x^2+10x-x-5\right)\)

=>\(5x^2+6x+26-4x^2-18x+10=0\)

=>\(x^2-12x+36=0\)

=>\(\left(x-6\right)^2=0\)

=>x-6=0

=>x=6(nhận)

b: ĐKXĐ: \(x\notin\left\{3;-2;4\right\}\)

\(1-\dfrac{8}{x-4}=\dfrac{5}{3-x}-\dfrac{8-x}{x+2}\)

=>\(\dfrac{x-4-8}{x-4}=\dfrac{-5}{x-3}+\dfrac{x-8}{x+2}\)

=>\(\dfrac{x-12}{x-4}=\dfrac{-5\left(x+2\right)+\left(x-8\right)\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}\)

=>\(\dfrac{x-12}{x-4}=\dfrac{-5x-10+x^2-11x+24}{\left(x-3\right)\left(x+2\right)}\)

=>\(\left(x-12\right)\left(x^2-x-6\right)=\left(x-4\right)\left(x^2-16x+14\right)\)

=>\(x^3-x^2-6x-12x^2+12x+72=x^3-16x^2+14x-4x^2+64x-56\)

=>\(-13x^2+6x+72=-20x^2+78x-56\)

=>\(7x^2-72x+128=0\)

=>\(\left[{}\begin{matrix}x=8\left(nhận\right)\\x=\dfrac{16}{7}\left(nhận\right)\end{matrix}\right.\)

c: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x-1}{x+2}+\dfrac{2}{x-2}=\dfrac{12}{x^2-4}\)

=>\(\dfrac{x-1}{x+2}+\dfrac{2}{x-2}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)

=>\(\dfrac{\left(x-1\right)\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)

=>\(x^2-3x+2+2x+4=12\)

=>\(x^2-x-6=0\)

=>(x-3)(x+2)=0

=>\(\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

16 tháng 11 2015

tick di roi toi tra loi

22 tháng 11 2021

Ừm. Nhưng là dạng toán nào? Có nhiều dạng toán lắm

17 tháng 8 2015

Lời giải đã được đăng ở đấy, post lại ở đây cho bạn dễ tìm

 

Để giải bài toán này đầu tiên ta có một nhận xét: Với mọi số dương \(x>0\) thì \(2x^3\ge3x^2-1.\)  Thực vậy xét hiệu hai vế ta có \(2x^3-3x^2+1=\left(x-1\right)^2\left(2x+1\right)\ge0.\)

Bây giờ, gọi \(D,E,F\)  là chân các đường cao kẻ từ \(A,B,C\).  Theo hệ thức lượng trong tam giác vuông (liên hệ giữa cạnh và hình chiếu) ta có:   Đối với tam giác vuông \(\Delta A'BC\)  và đường cao \(A'D\)  thì \(\frac{A'B^2}{A'C^2}=\frac{DB}{DC}\). Tương tự ta cũng có \(\frac{B'C^2}{B'A^2}=\frac{EC}{EA},\frac{C'A^2}{C'B^2}=\frac{FA}{FB}.\)  Suy ra  \(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}=\frac{DB}{DC}+\frac{EC}{EA}+\frac{FA}{FB}\)

Vì ba đường cao đồng quy nên theo định lý Ceva  \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}=1\).  Do đó theo bất đẳng thức Cô-Si ta được

\(\frac{DB}{DC}+\frac{EC}{EA}+\frac{FA}{FB}\ge3\sqrt[3]{\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}}=3.\)  Vì vậy mà \(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}\ge3.\)

Từ đó áp dụng Nhận xét ta thu được \(2\left(\frac{A'B^3}{A'C^3}+\frac{B'C^3}{B'A^3}+\frac{C'A^3}{C'B^3}\right)\ge3\left(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}\right)-3\ge3\cdot3-3=6.\)

Vì vậy ta được \(\frac{A'B^3}{A'C^3}+\frac{B'C^3}{B'A^3}+\frac{C'A^3}{C'B^3}\ge3.\) 

Dấu bằng xảy ra khi và chỉ khi D,E,F là trung điểm ba cạnh AB,BC,CA và điều đó có nghĩa là tam giác ABC đều.

Nhớ thanks nhé!

 


 

19 tháng 3 2016

Số lớn nhất có 3 CS lẻ chia hết cho 5 là: 995

Số nhỏ nhất có 3 CS lẻ chia hết cho 5 là : 105

Dãy số có khoảng cách là 10

Vậy có : ( 995-105):10+1=90 ( số)

19 tháng 3 2016

DE OM . EM HOC LOP 4 CHI HOC LOP 5 NEN BAI TOAN NAY DOI VOI CHI AL QUA DE EM A

23 tháng 10 2018

Không ai dám trả lời vì sợ mất điểm à :(

23 tháng 10 2018

mình thấy là như này : 

mik thì ik trả lời , làm bài -> các bn ý chọn thì chọn thì chọn kg thì thôi ( giúp )

còn mấy bn 2000- 3000

chác biết kiếm đâu ra chằng bao giờ thấy trả lời nhưng lại đứng đc trong bảng xếp hạng ???