Xác định đa thức f(x)= x^3-(m+7)x^2+(m^4-24m^2+22)x-m^3+13m. Biết f(3)=f(4)=f(5)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+a+b+c+d+e=2
32+16a+8b+4c+2d+e=9
243+81a+27b+9c+3d+e=22
1024+256a+64b+16c+4d+e=41
3125+625a+125b+25c+5d+e=66
\(\Leftrightarrow\) a+b+c+d+e=1
16a+8b+4c+2d+e=-23
81a+27b+9c+3d+e=-224
256a+64b+16c+4d+e=-983
625a+125b+25c+5d+e=-3059
(bạn tự rút e và d từ pt ra nha, do dài quá mình ko ghi hết)
\(\Leftrightarrow\) e=1-a-b-c-d
d=-24-15a-7b-3c
50a+12b+2c=-174
210a+42b+6c=-912
564+96a+12c=-2964
Vậy a=-15, b=85, c=-222
\(\Rightarrow\) f(2007)=3,256393374\(\cdot10^{16}\)
Bài 1:
\(f(x)=ax^2+bx+c\Rightarrow \left\{\begin{matrix} f(-2)=a(-2)^2+b(-2)+c=4a-2b+c\\ f(3)=a.3^2+b.3+c=9a+3b+c\end{matrix}\right.\)
\(\Rightarrow f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)\)
\(=13a+b+2c=0\)
\(\Rightarrow f(-2)=-f(3)\Rightarrow f(-2)f(3)=-f(3)^2\leq 0\) do \(f(3)^2\geq 0\)
Ta có đpcm.
Bài 2:
Thay $x=-3$ ta có:
\(f(-3)=a.(-3)+5=-2\)
\(\Rightarrow a=\frac{7}{3}\)
Vậy $a=\frac{7}{3}$
Thay x vào f (x)
\(\Rightarrow f\left(2\right)=-m.2+7=3\)
\(\Rightarrow-2m=-4\Rightarrow m=2\)
Vậy m= 2
Thay x = -5 vào f (x)
\(\Rightarrow f\left(-5\right)=\left(2\right).\left(-5\right)+7\)
\(\Rightarrow f\left(-5\right)=-3\)