Thu gọn biểu thức sau :
11 . 911 . 37 - 915 / ( 2 .314 )2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{11\cdot9^{11}\cdot3^7-27^{10}}{4\cdot81^1}\)
\(=\dfrac{11\cdot3^{22}\cdot3^7-\left(3^3\right)^{10}}{4\cdot3^4}\)
\(=\dfrac{11\cdot3^{29}-3^{30}}{4\cdot3^4}\)
\(=\dfrac{3^{29}\cdot\left(11-3\right)}{4\cdot3^4}\)
\(=\dfrac{3^{29}\cdot8}{4\cdot3^4}\)
\(=3^{25}\cdot2\)
@ Huỳnh Thanh Phong
Sao lại lấy 329 là thừa số chung ạ
dễ
\(\frac{11.9^{11}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
= \(\frac{11.\left(3^2\right)^{11}.3^7-\left(3^2\right)^{15}}{2^2.3^{28}}\)
= \(\frac{11.3^{22}.3^7-3^{30}}{4.3^{28}}\)
= \(\frac{11.3^{29}-3^{29}.3}{4.3^{28}}\)
= \(\frac{\left(11-3\right).3^{29}}{4.3^{28}}\)
= \(\frac{8.3^{29}}{4.3^{28}}\)
= 2 . 3
= 6
a) \(M=a^2\left(a+b\right)-b\left(a^2-b^2\right)+1=a^3+a^2b-a^2b+b^3+1=a^3+b^3+1\)
b) \(P=x\left(x-y+1\right)-y\left(y+1-x\right)-2=x^2-xy+x-y^2-y+xy-2=x^2+x-y-y^2-2\)
c) \(Q=\left(m+3\right)\left(m^2+3m-5\right)+\left(6-m\right)m^2+11=m^3+3m^2-5m+3m^2+9m-15+6m^2-m^3+11=12m^2+4m-4\)
a: Ta có: \(M=a^2\left(a+b\right)-b\left(a^2-b^2\right)+1\)
\(=a^3+a^2b-a^2b+b^3+1\)
\(=a^3+b^3+1\)
Sửa đề: \(\sqrt{11-6\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{2}+2}+\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\left|3-\sqrt{2}\right|+\left|\sqrt{2}-1\right|\)
\(=3-\sqrt{2}+\sqrt{2}-1\)
=3-1=2
\(\dfrac{2}{2+\sqrt{5}}+2\sqrt{5}=\dfrac{2\left(2-\sqrt{5}\right)}{4-5}+2\sqrt{5}\)
\(=\dfrac{4-2\sqrt{5}}{-1}+2\sqrt{5}\)
\(=-4+2\sqrt{5}+2\sqrt{5}\)
\(=-4+4\sqrt{5}\)
Ta có: \(\dfrac{2}{\sqrt{5}+2}+2\sqrt{5}\)
\(=2\sqrt{5}-4+2\sqrt{5}\)
\(=4\sqrt{5}-4\)
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)=8x^3+y^3\)
đề bài là thế này đúng ko 11 .911 .37 - 95 : ( 2 . 314)2
ta có : 11 . ( 32)11 . 37- (32)15 : 22 . 328
= 11 . 322 . 37 - 330 : 22 .328
= 11 . 329 - 330 : 22 . 328
= 329. ( 11 - 3 ) : 22 . 328
= 329. 8 : 22 . 328
= 329 . 23 : 22 . 328
= ( 329 : 328 ) . ( 23 : 22 )
= 3 . 2
= 6