K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

Đặt \(\left\{{}\begin{matrix}n+8=a^2\left(1\right)\\n+1=b^2\left(2\right)\end{matrix}\right.\) \(\left(a>b;a,b\inℕ^∗\right)\)

\(\left(1\right)\Leftrightarrow n=a^2-8\)

Thay vào (2), ta có \(a^2-8+1=b^2\)\(\Leftrightarrow a^2-b^2=7\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=7\) (4)

Vì \(a,b\inℕ^∗\) nên \(a-b< a+b\) (5)

Từ (4) và (5) \(\Rightarrow\left\{{}\begin{matrix}a-b=1\\a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=3\end{matrix}\right.\) (nhận)

\(\Rightarrow n+1=b^2=3^2=9\)\(\Rightarrow n=8\) (nhận)

15 tháng 5 2022

Vì \(n+8\) và \(n+1\) là 2 SCP

nên đặt \(\left\{{}\begin{matrix}n+8=x^2\\n+1=y^2\end{matrix}\right.\) ;\(a;b\in N\) (1)

Trừ từng vế ta được:

\(x^2-y^2=7\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=7\)

Vì \(x;y\in N\) nên \(x-y< x+y\)

\(\rightarrow\left\{{}\begin{matrix}x-y=1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Thế vào (1) ta được:\(\left\{{}\begin{matrix}n+8=4^2\\n+1=3^2\end{matrix}\right.\)

                                  \(\Leftrightarrow\left\{{}\begin{matrix}n=8\\n=8\end{matrix}\right.\)

Vậy \(n=8\) thì \(n+8;n+1\) là 2 SCP

 

24 tháng 11 2017

giúp mk vs mk kick cho nhieu ma

24 tháng 11 2017

Mik rất muốn giúp bạn nhưng bài này thật sự rất khí, rất rất khó luôn. Từ khi biết đc câu hỏi này của bạn là mik hỏi đông hỏi tây, hỏi thầy cô, bạn bè nhưng kết quả lại là.............. ai cũng chịu

Thế nha! Sorry bạn nhìu lắm. Mik là bạn của bn mà lại ko giúp bạn đc

đề bài là -2n+9 là số nguyên tố chứ

20 tháng 4 2019

Nếu vậy thì giải dùm tớ

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

4 tháng 1 2016

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

4 tháng 1 2016

ok pạn Phạm thế mạnh