(1/2+2x)(2x-3)=0
Tìm x bt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^3+\left(x+2\right)^3=\left(2x+3\right)^3\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+2x+1-x^2-3x-2+x^2+4x+4\right)=\left(2x+3\right)^3\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+3x+3\right)-\left(2x+3\right)^3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(4x^2+12x+9-x^2-3x-3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x^2+9x+6\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-1\\x=-2\end{matrix}\right.\)
\(\left(2x-3\right)^2-2x+3=0\)
\(\Rightarrow\left(2x-3\right)^2-\left(2x-3\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(2x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\2x-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{3}{2}\\x=2\end{cases}}\)
\(m>1\Rightarrow ac=-m-3< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
\(A=\dfrac{2\left(x_1+x_2\right)^2-6x_1x_2}{x_1+x_2}=\dfrac{2.4\left(m-1\right)^2+6\left(m+3\right)}{2\left(m-1\right)}\)
\(=\dfrac{4\left(m-1\right)^2+3\left(m-1\right)+12}{m-1}=4\left(m-1\right)+\dfrac{12}{m-1}+3\)
\(A\ge2\sqrt{4\left(m-1\right).\dfrac{12}{m-1}}+3=3+8\sqrt{3}\)
Dấu "=" xảy ra khi \(4\left(m-1\right)=\dfrac{12}{m-1}\Rightarrow m=1+\sqrt{3}\)
1. <=> \(\left(3x+2\right)^3-\left(\left(3x\right)^3+2^3\right)=0\)
<=> \(\left(\left(3x\right)^3+2^3+3\left(3x+2\right).3x.2\right)-\left(\left(3x\right)^3+2^3\right)=0\)
<=>3 (3x + 2) . 3x.2 = 0
<=> (3x + 2 ) . x = 0
<=> x = -2/3 hoặc x = 0
2. Tương tự
1
\(\left(3x+2\right)^3-\left[\left(3x\right)^3+2^3\right]=0\)
\(\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot2+3\cdot3x\cdot2^2+2^3-\left(3x\right)^3-2^3=0\)
\(54x^2+36x=0\)
\(18x\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{-2}{3}\end{cases}}\)
2
\(\left(2x+1\right)^3-\left[\left(2x\right)^3-1^3\right]=0\)
\(\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3-\left(2x\right)^3-1^3=0\)
\(12x^2+6x=0\)
\(6x\left(2x+1\right)=0\)
\(\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)
Ta có : x2 - 2x - (x + 3)2 = 6
<=> x2 - 2x - x2 - 6x - 9 = 6
<=> -8x - 9 = 6
=> -8x = 15
=> x = \(\frac{15}{-8}\)
\(\left(2x-3\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-3=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\) (Thêm KL cuối dòng: Vậy \(x\in\left\{\dfrac{3}{2};\dfrac{1}{2}\right\}\))
suy ra 1/2+2x=0(1)hay2x-3=0(2)
giải(1)1/2+2x=0 giải(2)2x-3=0
2x=0-1/2 2x=0+3
2x=-1/2 2x=3
x=-1/2:2 x=3:2
x=-1/4 x=3/2
vẫy x ϵ {-1/4;3/2}
Sẽ có 2 trường hợp xảy ra
Trường hợp 1:
\(\dfrac{1}{2}\) + 2x = 0
2x = 0 - \(\dfrac{1}{2}\)
2x = -\(\dfrac{1}{2}\)
x = -0,25
Trường hợp 2:
2x - 3 = 0
2x = 0 + 3
2x = 3
x = 3:2
x = 1,5