chung minh rang:S=2+2^2+2^3+....+2^99+2^100 chia het cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 2 + 22 + 23 + ... + 299 + 2100
= (2 + 22 + 23 + 24 + 25) + ... + ( 296 + 297 + 298 + 299 + 2100)
= 62 + ... + 295.( 2 + 22 + 23 + 24 + 25)
= 62 + ... + 295 . 62
= 62 . (1 + 295) chia hết cho 31
S = 2 + 2 2 + 2 3 + ... + 2 99 + 2 100
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 96 + 2 97 + 2 98 + 2 99 + 2 100 )
S = ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) + ... + ( 2 + 2 2 + 2 3 + 2 4 + 2 5 ) . 2 95
S = 62 + ... + 62 . 2 96
S = 62 ( 1 + ... + 2 96 )
Vì 62 chia hết cho 31
=> 62 ( 1 + ... + 2 96 ) chia hết cho 31
=> S chia hết cho 31
\(1+2+2^2+2^3+2^4+...+2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=31+...+2^{96}\cdot31\)
\(=31\left(1+...+2^{96}\right)\)(viết cái đề mak đang sai nói chi đến làm)
Tổng A có 100 số hạng
. Nhóm 2 số hạng vào 1 nhóm thì vừa hết .
Ta có : A = (2 + 2^2) + (2^3 + 2^4) + .....+ (2^99 + 2^100)
A = (2 + 2^2) + 2^2(2 + 2^2) + ......2^98(2 + 2^2)
A = 31 + 2^2 . 31 + .....+ 2^98 . 31
A = 31(1 + 2^2 + ....+ 2^98)chia hết cho 31
Chứng minh chia hết cho 31
C = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2( 1 + 2 + 22 + 23 + 24 ) + 26( 1 + 2 + 22 + 23 + 24 ) + ... + 296( 1 + 2 + 22 + 23 + 24 )
= 2.31 + 26.31 + ... + 296.31
= 31( 2 + 26 + ... + 296 ) chia hết cho 31 ( đpcm )
Tính tổng C
C = 2 + 22 + 23 + ... + 299 + 2100
=> 2C = 2( 2 + 22 + 23 + ... + 299 + 2100 )
= 22 + 23 + ... + 2100 + 2101
=> C = 2C - C
= 22 + 23 + ... + 2100 + 2101 - ( 2 + 22 + 23 + ... + 299 + 2100 )
= 22 + 23 + ... + 2100 + 2101 - 2 - 22 - 23 - ... - 299 - 2100
= 2101 - 2
Tìm x để 22x-1 - 2 = C
22x-1 - 2 = C
<=> 22x-1 - 2 = 2101 - 2
<=> 22x-1 = 2101
<=> 2x - 1 = 101
<=> 2x = 102
<=> x = 51
CHO A= 3+3MU2+3mu3+3mu4+...+3mu2017 a) tim so tu nhien N biet 2A +3 = 3n b)tim chu so tan cung cua A
Ta có: \(S=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow S=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{94}+2^{95}+2^{96}+2^{97}+2^{99}\right)\)
\(\Rightarrow S=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{94}.\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow2.31+2^6.31+...+2^{94}.31\)
\(\Rightarrow S=31.\left(2+2^6+....+2^{94}\right)\) CHIA HẾT CHO 31 (đpcm)
Vậy S chia hết cho 31