cho đa thức K(x) = P(x) + Q(x) + ax2 + bx + c. tìm a,b,c biết rằng: K(0)=3, K(1)=12 và K(-1)=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: k(1) = a + b(1 - 1) + c(1 - 1)(1 - 2) = 1
=> a + b.0 + c.0.(-1) = 1
=> a = 1
k(2) = a + b.(2 - 1) + c(2 - 1)(2 - 2) = 3
=> a + b.1 + c.1 . 0 = 3
=> a + b = 3
Mà a = 1 => b = 3 - 1 = 2
k(0) = a + b.(0 - 1) + c(0 - 1)(0 - 2) = 5
=> a + b . (-1) + c.(-1).(-2) = 5
=> a - b + 2c = 5
Mà a = 1; b = 2 => 1 - 2 + 2c = 5
=> -1 + 2c = 5
=> 2c = 5 + 1
=> 2c = 6
=> c = 6 : 2 = 3
Vậy a = 1; b = 2; c = 3
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\\a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\\a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3-a=2\\a-b+2c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
Với \(k\left(-1\right)=a.\left(-1\right)^2-b+c=a-b+c\left(1\right)\)
\(k\left(-2\right)=a.\left(-2\right)^2-2b+c=4a-2b+c\left(2\right)\)
từ đó suy ra \(k\left(-1\right).k\left(-2\right)=\left(a-b+c\right)\left(4a-2b+c\right)\)
thêm đề đi bạn hình như thiếu rồi
Thay K(0) = 4 vào đa thức K(x) ta có : a.0^2 + b.0 + c => c = 4 (1)
Thay K(1) = 3 và (1) vào đa thức K(x) ta có : a.1^2 + b.1 + 4 = a + b + 4 = 3 => a+b=-1 => a= -1 - b (2)
Thay K(-1) = 7 , (1) vào đa thức K(x) ta có : a.(-1)^2 + b.(-1) + 4 = a-b+4=7 => a-b=3 (3)
Thay (2) vào (3) ta có : -1 - b - b = -1 - 2b = 3 => 2b= -4 => b = -2
Thay b = -2 vào (3) ta có : a - (-2) = 3 => a = 1.
Vậy a + b + c = 1 + (-2) + 4 = 3
\(a=1,b=6,c=1\)
\(5a-b+c=5-6+1=0\)
\(P\left(1\right).P\left(3\right)=\left(1.1^2+6.1+1\right).\left(1.3^2+6.3+1\right)>0?\)