cho tam giác ABC có AB=ac
trên cạnh BClaays M sao cho BM=MN=NC
a.CM góc BAN= góc CAM
\b.gọi I là trung điểm của BC. CM AI là tia phân giác của góc MAN
c. góc MAN= 60 độ.Tính các góc trong tam giác AMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)
\(\Rightarrow\) \(AB=AC\) hay \(\frac{1}{2}AB=\frac{1}{2}AC\) và \(BM\)và \(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)
\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)
Xét \(\Delta AMN\)có\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)
b)Có
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow MN//BC\left(dpcm\right)\)
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:
BC chung.
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).
=> BN = CM (2 cạnh tương ứng).
Ta có: AB = AN + BN; AC = AM + CM.
Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).
=> AM = AN.
b) Xét tam giác AMN: AM = AN (cmt).
=> Tam giác AMN cân tại A.
c) Xét tam giác ABC:
BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).
I là giao điểm của BM và CN (gt).
=> I là trực tâm.
=> AI là đường cao.
Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.
=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).