tìm x
|x+1|+|x+1/2|+|x+1/6|+....+|x+1/9900|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+\left(x+\frac{1}{12}\right)+...+\left(x+\frac{1}{9900}\right)=2\)
=> \(x+\left(x+\frac{1}{1.2}\right)+\left(x+\frac{1}{2.3}\right)+\left(x+\frac{1}{3.4}\right)+...+\left(x+\frac{1}{99.100}\right)=2\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=2\)(100 hạng tử x)
=> \(100x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=2\)
=> \(100x+1-\frac{1}{100}=2\)
=> \(100x+\frac{99}{100}=2\)
=> \(100x=\frac{101}{100}\)
=> \(x=\frac{101}{10000}\)
\(X-\frac{2}{3}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
\(=>X-\frac{2}{3}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=>X-\frac{2}{3}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>X-\frac{2}{3}=1-\frac{1}{100}\)
\(=>X-\frac{2}{3}=\frac{100}{100}-\frac{1}{100}\)
\(=>X-\frac{2}{3}=\frac{99}{100}\)
\(=>X=\frac{99}{100}+\frac{2}{3}\)
\(=>X=\frac{497}{300}\)
Lưu ý: dấu chấm thay dấu nhân
\(x-\frac{2}{3}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
Tổng vế phải gồm : \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Với vế trái, ta có : \(x-\frac{2}{3}=\frac{99}{100}\)
\(x-\frac{2}{3}=\frac{99}{100}\)
\(x=\frac{99}{100}+\frac{2}{3}\)
\(x=\frac{497}{300}\)
(x+1)+(x+2)+...+(x+98)+(x+99)=9900
x.99+(1+2+3+...+98+99)=9900
x.99+[(99-1):1+1].(99+1):2=9900
x.99+99.100:2
x.99+99.50=9900
x.99+4950=9900
x.99=9900-4950
x.99=4950
x=4950:99
x=50
chúc bạn học tốt nha
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+98\right)+\left(x+99\right)=9900\)
\(\left(x+x+x+...+x+x\right)+\left(1+2+3+...+99\right)=9900\)
\(\left(99\cdot x\right)+\left(100\times99\div2\right)=9900\)
\(99x+4950=9900\)
\(99x=9900-4950\)
\(x=4950\div99\)
\(x=50\)
x + 1 + x + 2 + ... + x + 98 + x + 99 = 9900
( x + x + ... + x ) + ( 1 + 2 + ... + 98 + 99 ) = 9900
Số số hạng là : ( 99 - 1 ) : 1 + 1 = 99 ( số )
Tổng là : ( 99 + 1 ) x 99 : 2 = 4950
99x + 4950 = 9900
99x = 4950
x = 50
Vậy,......
(x+1)+(x+2)+(x+3)+.....+(x+99) = 9900
x+x+x+....+x+(1+2+3+...+99) = 9900
50x + 2500 = 9900
=> 50x =7400
=> x = 148
B=\(\frac{1}{2.x}+\left(\frac{1}{1.2}\frac{1}{2.3}\frac{1}{3.4}...\frac{1}{99.100}\right)\)
=\(\frac{1}{2.x}+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=2\)
=\(\frac{1}{2.x}+\left(1-\frac{1}{100}\right)\)\(=2\)
=\(\frac{1}{2.x}+\frac{99}{100}\)\(=2\)
=\(\frac{1}{2.x}=2-\frac{99}{100}\)
=\(\frac{1}{2.x}=\frac{101}{200}\)
=\(2.x=200\)
=\(x=200:2=100\)
1/2 * x + 1/2 + 1/6 + 1/12 + .... + 1/9900 = 2
<=> 1/2 * x + ( 1/2 + 1/6 + 1/12 + ... + 1/9900 ) = 2
<=> 1/2 * x + ( 1 /1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100 ) = 2
<=> 1/2 * x + ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/99 - 1/100 ) = 2
<=> 1/2 * x + ( 1 - 1/100 ) = 2
<=> 1/2 * x + ( 100/100 - 1/100 ) = 2
<=> 1/2 * x + 99/100 = 2
<=> 1/2 * x = 2 - 99/100
<=> 1/2 * x = 101/100
<=> x = 101/100 : 1/2
<=> x = 101/100 * 2
<=> x = 101/50
Vậy x = 101/50
(x+1)+(x+2)+...+(x+98)+(x+99)=9900
x+x+x+x+...x+(1+2+...+98+99)=9900
50x+2500=9900
=>50x=7400
vậy x=148