Không quy đồng mẫu số, hãy tính tổng
1+ 1/3 + 1/9 + 1/27 + 1/81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1+\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27} +\frac{1}{81}\)
=1+\(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> 3A-A=(\(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3}+1\))-(1+\(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\))
=>2A=3-\(\frac{1}{3^4}\)
=> A=(3-\(\frac{1}{3^4}\)):2
1.
Ta có:
* 279
= ( 3.9)9
= 39.99
= 3.38.99
=3.(32)4.99
= 3.94.99
= 3.913
* 817
= (92)7
= 914
M = 817 - 279 - 913
= 914 + 3.913 – 913
=913(9 – 3 – 1)
= 5.912 chia hết cho 5 và 9 => chia hết cho45
Vậy M chia hết cho 45.
A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A * 3= 3* ( 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
A* 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A * 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
A * 2 = 1 - 1/ 729
A * 2 = 1/728
A = 1/728 : 2
A = 2/728
Nếu không quy đồng Mẫu thì ta quy đồng Tử
P/S: 2/728 VÀ 1/2
1/2 = 1*2/ 2*2
= 2/4
So sánh 2/4 và 2/278 ta thấy phân số 2/4 lớn hơn.
Vậy 1/2 > A
Đ/S: A = 2/728
1/2 > A
\(A=\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}+\frac{1}{3x3x3x3x3x3}.\)
\(3xA=1+\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}\)
\(2xA=3xA-A=1-\frac{1}{3x3x3x3x3x3}\)
\(A=\frac{1}{2}-\frac{1}{3x3x3x3x3x3}< \frac{1}{2}\)
1+1/3+1/9+1/27+1/81 (ko quy đồng nha)
Không quy đồng
Ta có : \(1+\frac{1}{3}-\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
ta có : \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(\Rightarrow A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
\(\Rightarrow3A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}\)
\(\Rightarrow3A-A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\)
\(\Rightarrow2A=3-\frac{1}{3^4}\)
\(\Rightarrow A=\left(3-\frac{1}{3^4}\right):2=\frac{121}{81}\)
\(\dfrac{7\times2}{1\times2}=\dfrac{14}{2}.và.\dfrac{9}{2};\dfrac{81\times3}{7\times3}=\dfrac{243}{21}và\dfrac{9}{21}\)
\(\dfrac{7\times2}{1\times2}=\dfrac{14}{2},\dfrac{9}{2};\dfrac{81\times3}{7\times3}=\dfrac{243}{21},\dfrac{9}{21}\\ \dfrac{4\times2}{3\times2}=\dfrac{8}{6},\dfrac{16}{6};\dfrac{5\times3}{2\times3}=\dfrac{15}{6},\dfrac{19\times2}{3\times2}=\dfrac{38}{6}\)
Ta đặt: A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
\(\Rightarrow3A=3+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3A-A=\left(3+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\)
\(\Rightarrow2A=3-\frac{1}{3^4}\)
\(\Rightarrow A=\left(3-\frac{1}{3^4}\right):2\)
Giải
1+ 1 /3+1/9+1/27+1/81+1/243+1/729.
Đặt:
S = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân S với 3 ta có:
S x 3 = 3 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
Vậy:
S x 3 - S = 3 - 1/243
2S = 2186 / 729
S = 2186 / 729 : 2
S = 1093/729