thực hiện tính và so sánh A=\(\frac{2008^{2009}+1}{2009^{2009}+1}\)và B=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 20092009 + 1 / 20092010+1 < 20092009+1+2008 / 20092010+1+2008
= 20092009+2009 / 20092010+2009
= 2009(20092008+1) / 2009(20092009+1)
= 20092008+1 / 20092009+1 = A
=> A > B nhé!
Ai k mk mk k lại !!
Ta có: \(B=\frac{2009^{2009}+1}{2009^{2010}+1}<\frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}\)
\(=\frac{2009^{2009}+2009}{2009^{2010}+2009}\)
\(=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}\)
\(=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
=> B<A
Ai k mik mik k lại. Chúc các bạn thi tốt
Ta có: $B=\frac{2009^{2009}+1}{2009^{2010}+1}<\frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}$B=20092009+120092010+1 <20092009+1+200820092010+1+2008
$=\frac{2009^{2009}+2009}{2009^{2010}+2009}$=20092009+200920092010+2009
$=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}$=2009.(20092008+1)2009.(20092009+1)
$=\frac{2009^{2008}+1}{2009^{2009}+1}=A$=20092008+120092009+1 =A
=> B<A
Ai k mik mik k lại. Chúc các bạn thi tốt
Ta có :
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
Vậy A > B
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}< 1\)
\(\Rightarrow B=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(=\frac{2009.\left(2009^{2009}+1\right)}{2009.\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Suy ra : \(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2009}+1}{2009^{2010}+1}\) hay \(B< A\)
Vậy \(A>B\)
Ta có:
\(\frac{2009^{2008+1}}{2009^{2009+1}}=\frac{2009^{2009}}{2009^{2010}}=\frac{1}{2009}\)
\(\frac{2009^{2008+5}}{2009^{2009+9}}=\frac{2009^{2013}}{2009^{2018}}=\frac{1}{2009^5}\)
=>Đẳng thức trên lớn hơn đẳng thức dứi(vì 2009<2009^5)
Vậy.......