e) (-1/3).(5/7) = ?
f) (2/7):(3/4) = ?
cứu em với ạ . giải chi tiết giúp em nhaa❤
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(0,75+\left(\dfrac{-1}{3}\right)-\dfrac{5}{18}=\dfrac{3}{4}+\left(\dfrac{-1}{3}\right)-\dfrac{5}{18}=\dfrac{5}{12}-\dfrac{5}{18}=\dfrac{5}{36}\)
c) \(\dfrac{4}{15}\cdot\dfrac{1}{3}\cdot\dfrac{15}{20}=\dfrac{4}{15}\cdot\dfrac{1}{3}\cdot\dfrac{3}{4}=\dfrac{5}{45}\cdot\dfrac{3}{4}=\dfrac{15}{180}=\dfrac{1}{12}\)
d) \(\left(\dfrac{-1}{9}\right)\cdot\left(\dfrac{15}{22}\right):\left(\dfrac{-25}{9}\right)=\dfrac{-5}{66}:\left(\dfrac{-25}{9}\right)=\dfrac{-5}{66}\cdot\left(\dfrac{9}{-25}\right)=\dfrac{-3}{-110}=\dfrac{3}{110}\)
a) \(0,75\) + \(\dfrac{-1}{3}\) - \(\dfrac{5}{18}\)= \(\dfrac{5}{12}\) - \(\dfrac{5}{18}\) = \(\dfrac{5}{36}\)
b) \(\dfrac{4}{15}\)x \(\dfrac{1}{3}\)x \(\dfrac{15}{20}\)= 4/45 x 15/20 = 1/15
c) -1/9 x 15/22 : -25/9 = -5/66 : -25/9 = 3/110
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a.
\(2x-x^2+7=-\left(x^2-2x+1\right)+8=-\left(x-1\right)^2+8\le8\)
\(\Rightarrow2+\sqrt{2x-x^2+7}\le2+\sqrt{8}=2+2\sqrt{2}\)
\(\Rightarrow\dfrac{3}{2+\sqrt{2x-x^2+7}}\ge\dfrac{3}{2+2\sqrt{2}}=\dfrac{3\sqrt{2}-3}{2}\)
\(A_{min}=\dfrac{3\sqrt{2}-3}{2}\) khi \(x=1\)
b. ĐKXĐ: \(x\le1\)
\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}-\dfrac{1}{2}-1\right)\)
\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}\right)+\dfrac{3}{2}\)
\(B=-\left(\sqrt{1-x}-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)
\(B_{max}=\dfrac{3}{2}\) khi\(x=\dfrac{1}{2}\)
\(\dfrac{5}{7}=\dfrac{30}{42};\dfrac{6}{7}=\dfrac{36}{42}. Vay5phansocantimla:\dfrac{31}{42};\dfrac{32}{42};\dfrac{33}{42};\dfrac{34}{42};\dfrac{35}{42}\)
Qui đồng 2 phân số lên ta có:
5/7 = 30/42 và 6/7 = 36/42
Vậy phân số nằm giữa là: 31/42 ; 32/42; 33/42; 34/42; 35/42
\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)
\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
e) \(\left(\dfrac{-1}{3}\right)\cdot\dfrac{5}{7}=\dfrac{\left(-1\right)\cdot5}{3\cdot7}=\dfrac{-5}{21}\)
f) \(\dfrac{2}{7}:\dfrac{3}{4}=\dfrac{2}{7}\cdot\dfrac{4}{3}=\dfrac{8}{21}\)
\(e.\left(\dfrac{-1}{3}\right).\dfrac{5}{7}=\dfrac{\left(-1\right).5}{3.7}=\dfrac{-5}{21}\\ f.\dfrac{2}{7}:\dfrac{3}{4}=\dfrac{2}{7}.\dfrac{4}{3}=\dfrac{2.4}{7.3}=\dfrac{8}{21}\)