0,1 x y + 140 : y + 26 = 40 : y + 46,1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`y:0,25+y:12,5+y:0,5-y:0,1=40`
`yxx4+yxx8+yxx2+yxx10=40`
`yxx(4+8+2-10)=40`
`yxx4=40`
`y=40:4`
`y=10`
Vậy `y=10`
`@An`
y : 0,25 + y : 12,5% + y : 0,5 - y : 0,1 = 40
y : 0,25 + y : 0,125 + y : 0,5 - y : 0,1 = 40
y x 4 + y x 8 + y x 2 - y x 10 = 40
y x (4 + 8 + 2 - 10) = 40
y x 4 = 40
y = 40 : 4
y = 10
a, \(\left(x-2,5\right)\text{ : }1\frac{1}{2}=x\text{ : }2\)
\(\left(x-2,5\right)\text{ : }\frac{3}{2}=x\text{ : }2\)
\(\left(x-2,5\right)\text{ : }\frac{3}{2}\cdot2=x\)
\(\left(x-2,5\right)\text{ : }3=x\)
\(\frac{x}{3}-\frac{2,5}{3}-x=0\)
\(\frac{-2x}{3}-\frac{2,5}{3}=0\)
\(\frac{-2x-2,5}{3}=0\)
\(\Rightarrow\text{ }-2x-2,5=0\)
\(-2x=2,5\)
\(x=\frac{-2,5}{2}\)
Ta có \(\dfrac{x+5}{7}=\dfrac{40}{140}\)
\(\Leftrightarrow\dfrac{x+5}{7}=\dfrac{2}{7}\\ \Leftrightarrow x+5=2\\ \Leftrightarrow x=-3\)
Tương tự : \(\dfrac{-30}{5y+5}=\dfrac{40}{140}\)
\(\Leftrightarrow\dfrac{-6}{y+1}=\dfrac{2}{7}\\ \Leftrightarrow\left(y+1\right)\cdot2=-6\cdot7\\ \Leftrightarrow2y+2=-42\)
\(\Leftrightarrow2y=-44\\ \Leftrightarrow y=-22\)
Vậy..................................
\(y\div0,25+y\div12,5\%+y\div0,5-y\div0,1=40\)
\(\Rightarrow y\div0,25+y\div0,125+y\div0,5-y\div0,1=40\)
\(\Rightarrow y\div\left(0,25+0,125+0,5-0,1\right)=40\)
\(\Rightarrow y\div0,775=40\)
\(\Rightarrow y=31\)
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)
Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)
\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Có: \(3x=2y=4z\Rightarrow\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{2}}=\dfrac{z}{\dfrac{1}{4}}\)
Và x + y + z = 26
Áp dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{2}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+y+z}{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{4}}=\dfrac{26}{9}\)
=> \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{26}{9}\cdot\dfrac{1}{3}=\dfrac{26}{27}\\y=\dfrac{26}{9}\cdot\dfrac{1}{2}=\dfrac{13}{9}\\z=\dfrac{26}{9}\cdot\dfrac{1}{4}=\dfrac{13}{18}\end{matrix}\right.\)
Vậy...............