K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

ai giải đc mình k cho 100000....000 k

\(=x^2+6x+5+x^3-8-x^3-x^2+2x\)

=8x-3

5 tháng 11 2021

thank nhìu đang cần gấp

NV
24 tháng 9 2020

\(VT=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)

\(=...=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

\(=\dfrac{\sqrt{3}-1}{\sqrt{2}+1}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2}{1}=2\)

3 tháng 9 2017

giả sử 2 vế bằng nhau, nhân tích chéo, rồi được 2 vế = nhau là kết luận thỏa mãn

3 tháng 9 2017

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1=vp\)

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...

5 tháng 8 2018

\(\frac{4.\left(\sqrt{3}+1\right)}{\sqrt{3}-1}-\frac{2+\sqrt{3}}{2-\sqrt{3}}\)

\(\Leftrightarrow\frac{4\left(\sqrt{3}+1\right)\left(2-\sqrt{3}\right)}{\left(\sqrt{3}-1\right)\left(2-\sqrt{3}\right)}-\frac{\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\left(2-\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)

\(\Leftrightarrow\frac{4\left(\sqrt{3}+1\right)\left(2-\sqrt{3}\right)-\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(2-\sqrt{3}\right)}\)

\(\Rightarrow\frac{3\sqrt{3}-5}{3\sqrt{5}-5}=1\left(đpcm\right)\)