K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

\(\sqrt{x-9-6\sqrt{x-9}+9}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-9}-3\right)^2}=2\)

\(\sqrt{x-9}=5\Rightarrow x-9=25\Rightarrow x=34\)

1 tháng 10 2016

Điều kiện :x>9 phương trình <=> \(x-6\sqrt{x-9}=4=>x-6\sqrt{x-9}=4=>\left(x-9\right)-6\sqrt{x-9}+9=4=>\left(\sqrt{x-9}-3\right)^2=4\)

=>\(\orbr{\begin{cases}\sqrt{x-9}-3=-2\\\sqrt{x-9}-3=2\end{cases}=>\orbr{\begin{cases}\sqrt{x-9}=1\\\sqrt{x-9=5}\end{cases}=>\orbr{\begin{cases}x=10\\x=34\end{cases}}}}\)

10 tháng 12 2021

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

10 tháng 12 2021

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)

6 tháng 8 2015

\(\sqrt{x^2-10x+25}=7-2x=>\sqrt{\left(x-5\right)^2}=7-2x=>!x-5!=7-2x\)

\(x-5=7-2x\left(x>=5\right)=>3x=7+5=>x=4\)

\(5-x=7-2x\left(x2x-x=7-5=>x=2\)

7 tháng 10 2015

bình phương 2 vế lên là ra p :>

 

24 tháng 6 2016

Đặt \(\sqrt{3x-2}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)

\(\Rightarrow\hept{\begin{cases}a^2=3x-2\\b^2=x-1\end{cases}}\)\(\Rightarrow a^2+b^2=4x-3\)

\(pt\Leftrightarrow a+b=a^2+b^2-6+2ab\)

\(\Leftrightarrow a^2+b^2-6+2ab-a-b=0\)

\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)-6=0\)

\(\Leftrightarrow\left(a+b\right)^2+2\left(a+b\right)-3\left(a+b\right)-6=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+b+2\right)-3\left(a+b+2\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left(a+b+2\right)=0\)

\(\Leftrightarrow a+b=3\)hoặc\(a+b=-2\)(loại,vì a\(\ge\)0;b\(\ge\)0 =>a+b\(\ge\)0)

  • Với a+b=3

\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)

\(\Leftrightarrow\sqrt{3x-2}=3-\sqrt{x-1}\)

\(\Rightarrow3x-2=9+x-1-6\sqrt{x-1}\)

\(\Rightarrow2x-10=-6\sqrt{x-1}\)

\(\Rightarrow4x^2-40x+100=36\left(x-1\right)\)

\(\Rightarrow4x^2-76x+1236=0\)

\(\Rightarrow4x^2-8x-68x+136=0\)

\(\Rightarrow4x\left(x-2\right)-68\left(x-2\right)=0\)

\(\Rightarrow\left(4x-68\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=17\left(loai\right)\\x=2\left(tm\right)\end{cases}}\)

Vậy phương trình đã cho có nghiệm là x=2

20 tháng 9 2016

Cho tứ diện ABCD với BD Vuông góc với AC, CD vuông góc với AB. Chứng minh AD vuông góc với BC.

( Tứ diện trực tâm )

1 tháng 7 2023

1) \(\sqrt{x^2-x}=x\)

\(\Leftrightarrow x^2+x=x^2\)

\(\Leftrightarrow x^2+x-x^2=0\)

\(\Leftrightarrow x=0\)

Vậy: \(x=0\)

2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\))

\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)

\(\Leftrightarrow1-x^2=x^2-2x+1\)

\(\Leftrightarrow-x^2-x^2-2x=1-1\)

\(\Leftrightarrow-2x^2-2x=0\)

\(\Leftrightarrow-2x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;-1\right\}\)

1: =>x^2+x=x^2 và x>=0

=>x=0

2: =>1-x^2=x^2-2x+1 và x>=1

=>x^2-2x+1-1+x^2>=0 và x>=1

=>2x^2-2x=0 và x>=1

=>x=1

1 tháng 11 2020

\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)

\(ĐKXĐ:\hept{\begin{cases}\sqrt{x^2+x-1}\ge0\\\sqrt{x-x^2+1}\ge0\end{cases}}\)

Vì \(\sqrt{x^2+x-1}\ge0\)

\(\Rightarrow\)Áp dụng bđt Cô-si ta có: \(1+\left(x^2+x-1\right)\ge2\sqrt{x^2+x-1}\)(1)

Tương tự ta có: \(1+\left(x-x^2+1\right)\ge2\sqrt{x-x^2+1}\)(2)

Cộng (1) và (2) ta có: 

\(1+\left(x^2+x-1\right)+1+\left(x-x^2+1\right)\ge2\sqrt{x^2+x-1}+2\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x^2+x-1+1+x-x^2+1\ge2.\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow2+2x\ge2\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow1+x\ge\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x\ge x^2-x+2\)

\(\Leftrightarrow x^2-x+2-1-x\le0\)

\(\Leftrightarrow x^2-2x+1\le0\)

\(\Leftrightarrow\left(x-1\right)^2\le0\)(3)

Vì \(\left(x-1\right)^2\ge0\forall x\)(4)

Từ (3) và (4) \(\Rightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Thay \(x=1\)vào ĐKXĐ ta thấy \(x=1\) thỏa mãn ĐKXĐ

Vậy \(x=1\)

1 tháng 11 2020

\(\sqrt{x+x-1}+\sqrt{x-x^2+1}=x\left(x-1\right)+2\left(đk:...\ge x\ge\frac{1}{2}\right)\)( giải bpt này ra x-x2+1>=0 là tìm đc số trong dấu ...)

\(< =>\sqrt{x+x-1}-1+\sqrt{x-x^2+1}-1=x\left(x-1\right)\)

\(< =>\frac{2x-2}{\sqrt{x+x-1}+1}+\frac{x-x^2}{\sqrt{x-x^2+1}+1}=x\left(x-1\right)\)

\(< =>\frac{2\left(x-1\right)}{\sqrt{x+x-1}+1}+\frac{x\left(x-1\right)}{-\sqrt{x-x^2+1}-1}-x\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(\frac{2}{\sqrt{x+x-1}+1}+\frac{x}{-\sqrt{x-x^2+1}-1}-x\right)=0\)

\(< =>x=1\)( bạn đánh giá phần trong ngoặc to = đk ban đầu nhé )

18 tháng 1 2017

2012=4.503.

503 nguyên tố thì phải

\(\sqrt{2012}=2\sqrt{503}\)

x=y=503 là nghiệm

(x,y)=(0,2012);(2012,0): (503,503)

có lẽ hết rồi

19 tháng 1 2017

Kể cả hết rồi, phương pháp mò nghiệm chỉ dành cho cấp 1, ..có mò hết ra vẫn cần một lời giải thức__> kết luận, chính thức hết.

21 tháng 7 2016

ĐK : \(x\ge-1\)

pt<=> \(\left(x+1\right)\left(x^2+1\right)=1\)(bình phương 2 vế  ko âm)

<= .\(x^3+x^2+x+1=1\)

<=> \(x\left(x^2+x+1\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2+x+1=0\end{cases}}\)(vô lí )

vậy x=0 

NV
23 tháng 1

ĐKXĐ: \(0\le x\le9\)

Bình phương 2 vế ta được:

\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)

\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)

\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)

Tới đây em tự hoàn thành nốt