cho tam giac ABC nhon (AB<AC)
cac duong cao AD ,BE,CF cat nhau tai
a, cm HE.HB =HF.HC
b.CM TAM GIACEHF~tam giac CHB
c. cm EH la phan giac DEF
d, BIET HA/HB=2/3 . Tinh Saef./Sde
mn giup em nhanh dc ko a em dang can gap ~~ ~~
.........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :ac^2=hc^2+ha^2(định lí pitago)
\(\Rightarrow\)AH^2=AC^2-HC^2=4^2-2^2=12
\(\Rightarrow\)AH=\(\sqrt{12\approx3}\)
ĐỘ dài bc là:3+2=5
chu vi là:4+5+5\(\approx\)14
+Cm tứ giác BEDC nội tiếp:
-Xét tứ giác BEDC, ta có:
góc BEC= góc BDC
góc BEC và góc BDC cùng nhìn cạnh BC( cùng nhìn cạnh dưới một góc không đổi )
---> BEDC là tứ giác nội tiếp
+Cm góc EBC= góc ECD:
-Do tứ giác BEDC là tứ giác nội tiếp
mà góc EBD và góc ECD cùng nhìn cạnh ED
---> góc EBD= góc ECD(đpcm)
Chúc bạn học tốt nhé
xét tam giác ABC nhọn nội tiếp (O;r) ta có BD là đường cao(giả thiết)
=> góc BDC =90 độ
lại có CE là đường cao của tam giác ABC(giả thiết)=>góc CEB=90 độ
=>góc BDC+góc CEB=90+90=180 độ
mà 2 góc này ở vị trí đối nhau=> tứ giác BEDC nội tiếp
=> góc EBD=Góc ECD (cùng chắn cung ED)
Mk chỉnh lại đề nhé: trên cạnh AB và AC lấy điểm D và E sao cho: AD = 4cm; AE = 5cm
BÀI LÀM
Ta có: \(\frac{AD}{AB}=\frac{4}{12}=\frac{1}{3}\) \(\frac{AE}{AC}=\frac{5}{15}=\frac{1}{3}\)
suy ra: \(\frac{AD}{AB}=\frac{AE}{AC}\), áp dụng định lý Ta-lét đảo \(\Rightarrow\)\(\frac{DE}{BC}\)
Xét \(\Delta ADE\)và \(\Delta ABC\) có:
\(\frac{AD}{AB}=\frac{AE}{AC}\)
\(\widehat{BAC}\) CHUNG
suy ra: \(\Delta ADE~\Delta ABC\) (C.G.C)
Bạn kẻ thêm 2 đường cao bất kì của tam giác rồi áp dụng tỉ số lượng giác là xong rồi
Hình vẽ:
Giải:
Xét tam giác ABH và tam giác DBH, ta có:
\(\widehat{AHB}=\widehat{DHB}=90^0\)
\(HA=HD\left(gt\right)\)
HB là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DBH\) (Hai cạnh góc vuông)
Lại xét tam giác ACH và tam giác DCH, ta có:
\(\widehat{AHC}=\widehat{DHC}=90^0\)
\(HA=HD\left(gt\right)\)
HC là cạnh chung
\(\Rightarrow\Delta ACH=\Delta DCH\) (Hai cạnh góc vuông)
Chúc bạn học tốt!