K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

Cách 1:

*.Nhóm 1(1000 số đầu)):

Từ 000; 001; 002; ………; 998; 999. Có (999-000)+1=1000 (số)

-Hàng đơn vị: xuất hiện liên tục từ 0 đến 9 (có 10 số từ 0 đến 9. Trong đó có 1 chữ số 5). 

Như vậy sự lập lại này 1000:10= 100 (lần), trong đó có 100 chữ số 5.

-Hàng chục: mỗi 100 số, có 10 nhóm: chữ số 0 (01;02;…;08;09) rồi 10 chữ số 1 (10;11;…;19)……

Như vậy có 10 x 10 = 100 (chữ số 5)

-Hàng trăm: có 100 chữ số 0 (001;002;…;099) rồi đến 100 chữ số 1 (100;101;…;199)……

Như vậy có 100 chữ số 5.

Tất cả: 100+100+100=300 (chữ số 5)

*.Nhóm 2 (1000 số thứ 2):

Từ 1000; 1001; ……; 1998; 1999

Phân tích tương tự ta cũng có: 300 chữ số 5

*.Nhóm còn lại:
Từ 2000 đến 2013 chỉ có 1 chữ số 5 ở 2005.

Tất cả các chữ số 5 là: 300 + 300 + 1 = 601 (chữ số 5)

 Cách 2:

*.Nhóm 1(1000 số đầu)):

Từ 000; 001; 002; ………; 998; 999. Có (999-000)+1=1000 (số). Mỗi số có 3 chữ số.

Như vậy có 3 x 1000 = 3000 (chữ số) mà 10 chữ số (0; 1; …;8 ; 9)đều xuất hiện như nhau.

Vậy có 3000 : 10 = 300 (chữ số 5)
*.Nhóm 2(1000 số thứ 2):

Từ 1000; 1001; ……; 1998; 1999Phân tích tương tự ta cũng có: 300 chữ số 5.

*.Nhóm còn lại:
Từ 2000 đến 2013 chỉ có 1 chữ số 5 ở 2005.

Tất cả các chữ số 5 là: 300 + 300 + 1 = 601 (chữ số 5)

2 tháng 2 2017

Xét chữ số 1 đứng ở hàng đơn vị:
Mỗi nhóm đều có 1 chữ số 1 đứng ở hàng đơn vị  số chữ số 1 ở hàng đơn vị là 100 x 1 = 100 chữ số

Xét chữ số 1 đứng ở hàng chục:
Ta chỉ xét những nhóm có số trăm, số nghìn vì khi đó mới có chữ số 1 đứng ở hàng chục
Nhóm ..: Từ 10 ; 11 ; ….; 19
Nhóm ..: Từ 110 ; 111 ; ….; 119
Nhóm ..: Từ 210  219 => có (919 - 19) : 100 + 1 = 10 nhóm
…… Mỗi nhóm có 10 chữ số 1 => 10 x 10 = 100 chữ số 1
Nhóm ..: Từ 910  919 ở hàng chục


Xét chữ số 1 ở hàng trăm
Nhóm..: Từ 100 đến 199 Có (199 – 100) + 1 = 100 chữ số 1 ở hàng trăm

Xét chữ số 1 ở hàng nghìn
Nhóm..: Từ 1000 đến 199 Có 1 chữ số 1 ở hàng nghìn

Vậy có tất cả: 100 + 100 + 100 + 1 = 301 chữ số 1

2 tháng 2 2017

karen1 copy bài của người ta từ trang khác

17 tháng 7 2015

1) Từ 1 đến 9 có 9 chữ số.

 Từ 10 đến 99 có :90*2=180 chữ số.

Còn lại số chữ số trước chữ số thứ 2014 là: 2014-180-9=1825(c/s)Mà 1825 chia 3 dư 1 nên chữ số thứ 2014 là 6.

2)Ta thấy : a+b và số ab có cùng số dư khi chia cho 9 .

=>A chia cho 9  có cùng số  dư với 1+2+3+...+100.

=>A chia 9 dư 1.

    

 

7 tháng 3 2016

chu so7 chac 100000000000000000% luon

14 tháng 2 2016

1607 chữ số

25 tháng 8 2016
có100
14 tháng 3 2017

có 12 chữ số có chữ số 0 tận cùng

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.