cho hình bình hành ABCD
a. chứng minh tam giác ABC = tam giác CDA
b chứng minh AB//DC và AD//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Suy ra: AB//CD;AD//BC
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
mà BD=AE(Hai cạnh đối trong hình bình hành ABDE)
nên \(\dfrac{AE}{DC}=\dfrac{AB}{AC}\)(đpcm)
b) Ta có: AE//BD(Hai cạnh đối của hình bình hành ABDE)
nên AE//BC(C∈BD)
hay \(\widehat{MAE}=\widehat{MCB}\)(hai góc so le trong)
Xét ΔMAE và ΔMCB có
\(\widehat{MAE}=\widehat{MCB}\)(cmt)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
Do đó: ΔMAE∼ΔMCB(g-g)
#muon roi ma sao con
A B C D F E G
a, Xét tam giác BEF và tam giác DEA ta có :
^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )
\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1)
Vậy tam giác BEF ~ tam giác DEA ( c.g.c )
b, Xét tam giác EGD và tam giác EAB ta có :
^GED = ^EAB ( đ.đ )
\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét ) (2)
Vậy tam giác EGD ~ tam giác EAB ( c.g.c )
\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )
c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 )
Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)
A B C D E F H 3 6
a, Xét tam giác AEB và tam giác AFC ta có
^AEB = ^AEC = 900
^A _ chung
Vậy tam giác AEB ~ tam giác AFC ( g.g )
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)
a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao
AB^2 + AC^2 = BC^2
=> BC^2 = 36 + 64 = 100 => BC = 10 cm
Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
mà DC = BC - BD = 10 - BD
hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm
=> DC = 10 - BD = 10 - 30/7 = 40/7 cm
b, Xét tam giác ABC và tam giác AHB ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác AHB ( g.g )