A = \(\frac{1}{10}\)+ \(\frac{1}{30}\)+\(\frac{1}{60}\)+.....+\(\frac{1}{360}\)+ \(\frac{1}{450}\)=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{14}\)=\(\frac{1}{7}-\frac{1}{14}\)=\(\frac{1}{14}\)
B=0
\(\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}\)
\(=\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}\)
\(=\frac{1}{7}-\frac{1}{14}=\frac{1}{14}\)
1 cách khác nó phức tạp và khó hơn "n" lần :)) Cơ mà nó chẳng khác của cậu là mấy :v
\(4+\frac{x}{1+\frac{1}{2+\frac{1}{3}}}=\frac{x}{4+\frac{1}{3+\frac{1}{2}}}\)
\(\Leftrightarrow4+\frac{x}{1+\frac{1}{\frac{7}{3}}}=\frac{x}{4+\frac{1}{\frac{7}{2}}}\)
\(\Leftrightarrow4+\frac{x}{1+\frac{3}{7}}=\frac{x}{4+\frac{2}{7}}\)
\(\Leftrightarrow4+\frac{x}{\frac{10}{7}}=\frac{x}{\frac{30}{7}}\)
\(\Leftrightarrow4+x.\frac{7}{10}=x.\frac{7}{30}\)
\(\Leftrightarrow4+\frac{7x}{10}=\frac{7x}{30}\)
\(\Leftrightarrow120+21x=7x\)
\(\Leftrightarrow120=7x-21\)
\(\Leftrightarrow120=-14x\)
\(\Leftrightarrow-\frac{120}{14}=-\frac{60}{7}=x\)
\(\Rightarrow x=-\frac{60}{7}\)
Tuấn Huỳnh cách của a có khác gì cách của e đâu.chỉ một bên chọn MSC còn a thì chuyển vế thôi mà
1) Tính :
a) \(\left(2008.2009.2010.2011\right).\left(1+\frac{1}{2}:\frac{2}{3}-\frac{4}{3}\right)\)
\(=\left(2008.2009.2010.2011\right).\left(1+\frac{1}{3}-\frac{4}{3}\right)\)
\(=\left(2008.2009.2010.2011\right).\left(\frac{4}{3}-\frac{4}{3}\right)\)
\(=\left(2008.2009.2010.2011\right).0\)
\(=0\)
2) Tìm x
a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2012\)
b) \(\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}.\frac{1}{6}.\left(x-1,010\right)=\frac{1}{360}-\frac{1}{720}\)
\(\Rightarrow\frac{1}{2.3.4.5.6}.\left(x-1,01\right)=\frac{1}{720}\)
\(\Rightarrow\frac{1}{720}.\left(x-1,01\right)=\frac{1}{720}\)
\(\Rightarrow x-1,01=\frac{1}{720}:\frac{1}{720}\)
\(\Rightarrow x-1,01=1\)
\(\Rightarrow x=1+1,01\)
\(\Rightarrow x=2,01\)
Ta có :
\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)\)
Ta thấy :
\(\frac{1}{20}< \frac{1}{11}\)
\(\frac{1}{20}< \frac{1}{12}\)
\(...\)
\(\frac{1}{20}< \frac{1}{19}\)
\(\Rightarrow\frac{1}{20}\cdot10< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)(1)
\(\frac{1}{30}< \frac{1}{21}\)
\(\frac{1}{30}< \frac{1}{22}\)
\(...\)
\(\frac{1}{30}< \frac{1}{29}\)
\(\Rightarrow\frac{1}{30}\cdot10< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\)
\(\Rightarrow\frac{1}{3}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\)(2)
Từ (1),(2) :
\(\Rightarrow\frac{1}{2}+\frac{1}{3}< \frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\)
\(\Rightarrow\frac{5}{6}< A\)
\(#Louis\)
a) 5/30+15/90+25/150+35/210+45/270
=1/6+1/6+1/6+1/6+1/6
=1/6 x 5
=5/6
b) 1/2+1/6+1/12+1/20+....+1/56
=1/1x2+1/2x3+1/3x4+1/4x5+.....1/7x8
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......-1/7+1/7-1/8
=1/1-1/8
=7/8
c) mình chịu
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)
\(A=\frac{9}{10}-\frac{9}{10}=0\)
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(\Leftrightarrow A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(\Leftrightarrow A=\frac{9}{10}-\frac{9}{10}\)
\(\Leftrightarrow A=0\)