K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

\(x+\frac{1}{2}=2\)

          \(x=2-\frac{1}{2}\)

           \(x=\frac{3}{2}\)

27 tháng 9 2016

x= \(\frac{3}{2}\)

tk nhé

22 tháng 3 2017

Đk:\(x\ne0;1;2;3;4\)

\(pt\Leftrightarrow\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}=2-\frac{1}{4-x}\)

\(\Leftrightarrow\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x}=2-\frac{1}{4-x}\)

\(\Leftrightarrow\frac{1}{x-4}-\frac{1}{x}=2-\frac{1}{4-x}\)\(\Leftrightarrow\frac{4}{x\left(x-4\right)}=\frac{2x-7}{x-4}\)

Dễ thấy \(x\ne4\) nên nhân 2 vế của pt vừa biến đổi với \(x-4\) ta dc:

\(\Leftrightarrow\frac{4}{x}=2x-7\Leftrightarrow x\left(2x-7\right)=4\)

\(\Leftrightarrow2x^2-7x=4\Leftrightarrow2x^2-7x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\)\(\Leftrightarrow x=-\frac{1}{2}\left(x\ne4\right)\)

14 tháng 8 2016

1/ Ta có : \(\frac{\left(x+2\right)+\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=\frac{1}{x-2}\)

=> \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}=\frac{1}{x-2}\)

=>  \(\left(2x+1\right)\left(x-2\right)=\left(x-1\right)\left(x+2\right)\)

=>   \(2x^2-3x-2=x^2+x-2\)

=>    \(x^2-4x=0\)

=>    \(x\left(x-4\right)=0\)

=>    \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

2/ Ta có:   \(\frac{x+3+2\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)

=>    \(\frac{x+3+2x+2}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)

=>    \(\frac{3x+5}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)

=>    \(\left(x+1\right)\left(x+3\right).3=\left(3x+5\right)\left(x+2\right)\)

=>     \(3x^2+12x+9=3x^2+11x+10\)

=>     \(x=1\)

25 tháng 2 2019

a, P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\): ( \(\frac{x+1}{x}\)\(\frac{1}{x-1}\)\(\frac{x^2-2}{x\left(x-1\right)}\)

P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)\(\frac{\left(x+1\right)\left(x-1\right)+x-x^2+2}{x\left(x-1\right)}\)

P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)\(\frac{x\left(x-1\right)}{x^2-1+x-x^2+2}\)

P=  \(\frac{x^2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

P= \(\frac{x^2}{x-1}\)( đkxđ x khác 1)

b, để P=\(\frac{-1}{2}\)\(\Rightarrow\)\(\frac{x^2}{x-1}\)=\(\frac{-1}{2}\)\(\Rightarrow\)1-x  =  2x\(^2\)

\(\Rightarrow\)2x\(^2\)+ x-1 = 0\(\Rightarrow\)2x\(^2\)- 2x +x - 1   =0\(\Rightarrow\)(x -1 ) (2x + 1) = 0

\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}\)

vậy x= \(\frac{-1}{2}\)

c, tớ chịu thôi mà tớ mỏi tay lắm òi. k cho tớ nhé

17 tháng 5 2017

a, tự lm......

P=x2 / x-1

b, P<1

=> x2/x-1  <1

<=>x2/x-1 -1 <0

<=>x2-x+1 / x-1<0

Vi x2-x+1= (x -1/2 )2+3/4 >0

=> Để P<1

x-1 <0

x <1

c, x2/x-1 = x2-1+1/x-1

             = x+1 +1/x-1

               = 2 +(x-1) + 1/x-1

Áp dụng BDT Cô si ta có :

x-1  + 1/x-1 >hoặc = 2

=> P>= 3

Đầu = xảy ra <=> x=2( x >1)

Vay......

5 tháng 8 2017

làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4

11 tháng 8 2020

Kết quả là 25

8 tháng 12 2017

=> 1/x - 1/x+1 + 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 - 1/x = 1/2010

=> -1/x+3 = 1/2010

=> 1/x+3 = 1/-2010

=> x+3 = -2010

=> x = -2010-3 = -2013

k mk nha

2 tháng 7 2018

1/x - 1/x+1 + 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 - 1/x = 1/2010

=> -1/x+3 = 1/2010

=> 1/x+3 = 1/-2010

=> x+3 = -2010

=> x = -2010-3 = -2013

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)