Rút gọn tổng \(S=C\overset{1}{2019}-2C\overset{2}{2019}+...-2018C\overset{2018}{2019}+2019C\overset{2019}{2019}\) bằng:
A. 2019
B.1
C. -2019
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)
Đạo hàm 2 vế:
\(n\left(1+x\right)^{n-1}=C_n^1+2xC_n^2+...+n.x^{n-1}C_n^n\)
Thay \(x=1\)
\(\Rightarrow n.2^{n-1}=C_n^1+2C_n^2+...+nC_n^n\)
\(\Rightarrow n.2^{n-1}+1=C_n^0+C_n^1+2C_n^2+...+nC_n^n\)
\(\Rightarrow S=n.2^{n-1}+1\)
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)
Đạo hàm 2 vế:
\(n\left(1+x\right)^{n-1}=C_n^1+2xC_n^2+...+nx^{n-1}C_n^n\)
Tiếp tục đạo hàm 2 vế:
\(\left(n-1\right)n\left(1+x\right)^{n-2}=2C_n^2+2.3xC_n^3+...+\left(n-1\right)nx^{n-2}C_n^n\)
Thay \(x=1\)
\(\Rightarrow\left(n-1\right)n.2^{n-2}=1.2C_n^2+2.3C_n^3+...+\left(n-1\right)nC_n^n\)
\(\Rightarrow\left(n-1\right)n.2^{n-2}+n=C_n^1+1.2C_n^2+...+\left(n-1\right)n.C_n^n\)
\(\Rightarrow S=\left(n-1\right)n.2^{n-2}+n\)
\(\Leftrightarrow\frac{1}{x}-\frac{2}{x\left(x+1\right)}=\frac{7}{6\left(x+4\right)}\)
\(\Leftrightarrow\frac{x-1}{x\left(x+1\right)}=\frac{7}{6\left(x+4\right)}\)
\(\Leftrightarrow6\left(x-1\right)\left(x+4\right)=7x\left(x+1\right)\)
\(\Leftrightarrow x^2-11x+24=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)
a: =>x^2-8x+16<x^2-8x
=>16<0(loại)
b: =>\(x+\dfrac{1}{2}>=\dfrac{5x-3}{3}\)
=>x+1/2>=5/3x-1
=>-2/3x>=-3/2
=>x<=3/2:2/3=9/4
c: =>\(\dfrac{7-x}{4}< =\dfrac{2x-4}{3}\)
=>21-3x<=8x-16
=>-11x<=-37
=>x>=37/11