K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Tự vẽ hình:

cminh:Vì D đối xứng với G qua M

        =>GM=MD Hay GD=2GM

Vì BM;CN cắt nhau tại G trong tam giác ABC

=>G là trọng tâm trong Tam giác ABC =>BG=2GM

Suy ra : GD=BG(vì =2GM)=> G là trung điểm của BD (1)

Ta lại có : E đối xứng với G qua N=> EN=GN Hay EG=2NG

Và CG=2GN( G là trọng tâm)

Suy ra: CG=EG ( vì =2NG) (2) (*)

Từ (1) (2)=> Tứ giác BEDC là hình bình hành

Xét \(\Delta\)CBM Và \(\Delta\)BCN Có:

       BC: Cạnh chung

Góc B=C(g/t)

       BN=CM(AB=AC)

     

=> hai tam giác bằng nhau(c-g-c)

=>MBC=NCB(2 góc tương ứng) hay tam giác GBC cân=> BG=GC (**)

Từ (*) (**)=> Hình bình hành BEDC là hình chữ nhật

17 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G

Suy ra: G là trọng tâm của ∆ ABC .

⇒ GB = 2GM (tính chất đường trung tuyến)

GC = 2GN (tính chất đường trung tuyến)

Điểm D đối xứng với điểm G qua điểm M

⇒ MG = MD hay GD = 2GM

Suy ra: GB = GD (l)

Điểm E đối xứng với điểm G qua điểm N

⇒ NG = NE hay GE = 2GN

Suy ra: GC = GE (2)

Từ (1) và (2) suy ra tứ giác BCDE là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét  ∆ BCM và  ∆ CBN, có: BC cạnh chung

∠ (BCM) =  ∠ (CBN) (tính chất tam giác cân)

CM = BN (vì AB = AC)

Suy ra:  ∆ BCM = ∆ CBN (c.g.c)

⇒  ∠ (MBC) =  ∠ (NCB) ⇒  ∆ GBC cân tại G ⇒ GB = GC ⇒ BD = CE

Hình bình hành BCDE có hai đường chéo bằng nhau nên nó là hình chữ nhật.

7 tháng 10 2016

khó quá

7 tháng 10 2016

khó thế không biết

30 tháng 6 2017

Hình chữ nhật

23 tháng 10 2017

MK dang thac mac tai sao mk lai co the lam ging het bn 100% ?

Hình chữ nhật

a)

Xét tứ giác MNPQ có 

G là trung điểm của đường chéo MP(gt)

G là trung điểm của đường chéo NQ(gt)

Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) 

Xét ΔABC có 

BM là đường trung tuyến ứng với cạnh AC(gt)

CN là đường trung tuyến ứng với cạnh AB(gt)

BM cắt CN tại G(gt)

Do đó: G là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

Suy ra: \(MG=\dfrac{1}{3}MB;BG=\dfrac{2}{3}MB;NG=\dfrac{1}{3}NC;CG=\dfrac{2}{3}NC\)(1)

Ta có: G là trung điểm của MP(gt)

nên MG=GP

mà \(MG=\dfrac{1}{3}MB\)

nên \(MG=GP=\dfrac{1}{3}MB\)

Ta có: MG+GP=MP(G nằm giữa M và P)

nên \(MP=\dfrac{1}{3}MB+\dfrac{1}{3}MB=\dfrac{2}{3}MB\)(1)

Ta có: G là trung điểm của NQ(gt)

nên \(GN=GQ=\dfrac{1}{3}NC\)

Ta có: NG+GQ=NQ(G là trung điểm của NQ)

nên \(NQ=\dfrac{1}{3}NC+\dfrac{1}{3}NC=\dfrac{2}{3}NC\)(2)

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔBAC cân tại A)

nên AN=NB=AM=MC

Xét ΔAMB và ΔANC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAM}\) chung

AM=AN(cmt)

Do đó: ΔAMB=ΔANC(c-g-c)

Suy ra: BM=CN(hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra NQ=MP

Hình bình hành MNPQ có NQ=MP(cmt)

nên MNPQ là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

9 tháng 7 2021

cảm ơn bạn nha hihi